首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
  国内免费   18篇
  2021年   3篇
  2020年   1篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   20篇
  2013年   22篇
  2012年   19篇
  2011年   21篇
  2010年   27篇
  2009年   16篇
  2008年   13篇
  2007年   12篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  1983年   1篇
排序方式: 共有195条查询结果,搜索用时 406 毫秒
21.
中国灌木辣椒种质遗传多样性的SRAP和SSR分析   总被引:3,自引:0,他引:3  
应用SRAP和SSR分子标记对8份辣椒种质进行了遗传多样性分析,结果表明,15对SRAP引物组合共扩增出321条带,平均每对引物扩增出21.40条,多态性位点比率为72.90%;18对SSR引物共扩增出109条带,平均每对引物扩增出6.06条,多态性位点比率为98.17%。与SRAP比较,SSR检测到的Shannon多样性指数(I)、观测等位基因数(Na)和有效等位基因数(Ne)等遗传多样性参数都较大,说明SSR有更高的多态性检测效率。基于SRAP的聚类与基于SSR的聚类之间存在极显著正相关,且都能将中国灌木辣椒种质与美洲灌木辣椒种质及一年生辣椒种质有效区分。  相似文献   
22.
大豆种质资源SRAP分子标记中的引物筛选   总被引:1,自引:0,他引:1  
以113个大豆栽培品种和20个野生品种为材料,从288对引物组合中筛选出12对多态性丰富、条带清晰、可重复性好的SRAP引物组合。用筛选出的12对引物组合对大豆品种进行PCR扩增,获得了带型丰富和清晰可辨的DNA的PAGE指纹图谱;共扩增出251条谱带,其中多态性条带220条,多态性谱带比率为87.6%,平均每个引物扩增出18.3条谱带。结果显示,所筛选出的12对引物组合可以有效的应用于大豆种质资源的SRAP分析。  相似文献   
23.
菠萝SRAP反应体系的建立及优化   总被引:11,自引:0,他引:11  
目的:建立一种适合菠萝基因扩增的 SRAP 反应体系.方法:用改良 CTAB 法提取菠萝 DNA,对扩增结果影响重要的反应组分 Taq 酶、Mg2 、随机引物及 dNTPs 进行单因素体系优化,以确定最佳菠萝 SRA P反应体系.结果:用这种方法建立的菠萝SRAP 反应体系为:20μL 反应体系中含1×PCR buffer,2.5mmol/L Mg2 、1.2U TaqDNA 聚合酶、0.2mmol/L dNTPs、0.3umol/L随机引物、20ng DNA 模板.结论:用引物Me4-Em4 组合对供试菠萝 19 个品种进行扩增,结果扩增条带清晰、丰富、重复性好,此 SRAP反应体系适合菠萝基因型扩增.  相似文献   
24.
Arundo donax (giant reed) is an aggressive invasive weed of riparian habitats throughout the southern half of the United States from California to Maryland. Native to Asia, the species is believed to have been initially introduced into North America from the Mediterranean region although subsequent introductions were from multiple regions. To provide insight into the potential for biological control of A. donax, genetic variation in plants sampled from a wide geographical area in the United States was analyzed using Sequence Related Amplification Polymorphism (SRAP) and transposable element (TE)-based molecular markers. Invasive individuals from 15 states as well as four populations in southern France were genetically fingerprinted using 10 SRAP and 12 TE-based primer combinations. With the exception of simple mutations detected in four plants, A. donax exhibited a single multilocus DNA fingerprint indicating a single genetic clone. The genetic uniformity of invasive A. donax suggests that classical biological control of the species could be successful. A lack of genetic diversity in the invaded range simplifies identification of native source populations to search for natural enemies that could be used as biocontrol agents.  相似文献   
25.
This study examined 63 tree peony specimens, consisting of 3 wild species and 63 cultivars, using sequence-related amplified polymorphism (SRAP) markers for the purpose of detecting genomic polymorphisms. Bulk DNA samples from each specimen were evaluated with 23 SRAP primer pairs. Among the 296 different amplicons, 262 were polymorphic. The maximum parsimony, neighbor-joining, and unweighted pair-group method using arithmetic average trees were largely in congruence. In the three trees, the wild species Paeonia ludlowii and P. delavayi formed separate clusters with strong bootstrap support, and P. ostii was closely related to all cultivars. The cultivars were divided into groups with various corresponding bootstrap values. The genetic similarity among the genotypes ranged from 0.02 to 0.73. These results demonstrate that SRAP markers are effective in detecting genomic polymorphisms in the tree peony and should be useful for linkage map construction and molecular marker assisted selection breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
26.
The genetic diversity among the Turkish cultivars of common bean (Phaseolus vulgaris L.) was estimated by studying the Sequence Related Amplified Polymorphism (SRAP), Peroxidase Gene Polymorhism (POGP), and Chloroplast Simple Sequence Repeats (cpSSR) markers. The unweighted pair group method arithmetic average (UPGMA) and Neighbor joining (NJ) algorithm resulted in a dendrogram representing the genetic relationship among major common bean cultivars grown in Turkey. The dendrogram generated two groups possibly representing two different major gene pools. By using three different marker systems, 194 alleles were detected and 118 were found to be polymorphic. For SRAP, POGP and cpSSR, 64, 64 and 26% polymorphism ratio were obtained, respectively. Principal Component Analysis (PCA) was also carried out to determine genetic variation among common bean genotypes and three different groups were generated. The individuals were placed into three different populations in structure analysis. Three populations created in structure analysis were exactly corresponded to the three groups in PCA. Analysis of Molecular Variance (AMOVA) was used to partition the genetic variations. The percentage of the variance was approximately 59%, 3%, and 38% among groups, among populations within groups and, within populations, respectively. The percentages of variation were found to be significantly high within the populations and among the groups.  相似文献   
27.
Understanding genetic diversity and phylogenetic relationships is useful for plant breeding. In this study, we assessed the genetic diversity in a panel of 84 accessions of kenaf from 26 countries using SRAP and ISSR markers. The kenaf accessions could be divided into L1 (60 cultivated varieties) and L2 (24 wild accessions) at the level of 0.145 genetic dissimilarity coefficient by UPGMA. The L2 group was further divided into two subgroups (16 relative-wide and 9 origin wide accessions) at the level of 0.207 genetic dissimilarity. Out of the 9 wild accessions in the L2 group, 6 were from Tanzania and the remaining 3 lines were from Kenya. These results suggest that the center of origin for kenaf might be Tanzania and Kenya.  相似文献   
28.
Genetic diversity among seven Saudi tomato landraces collected from different regions of the country was assessed using SDS-PAGE and molecular (sequence-related amplified polymorphism- SRAP) markers. A total of 19 alternative protein bands with different mobility rates were identified within a molecular weight range of 9.584–225?KDa, with 53% polymorphism. Specific protein bands were observed in the “Hail 548” and “Qatif 565” landraces. Genetic similarity based on Jaccard’s coefficient ranged from 0.53 to 1.00, with an average of 0.72. For molecular evaluation, 143 amplicons (fragments) were generated using 27 SRAP primer pair combinations, of which 88 were polymorphic across all the landraces. The PIC values ranged from 0.46 to 0.90, with an average of 0.76. All landraces showed an average of 0.66 similarity coefficient value. The UPGMA dendrogram supported by principal coordinate analysis (PCoA) revealed clusters of the landraces that almost corresponded to their geographical origin. Thus, seed storage protein profiling based on SDS-PAGE and SRAP markers can efficiently be used to assess genetic variability among tomato germplasms. The information obtained in the analysis will be of great interest in the management of ex situ collections for utilization in breeding programs or for direct use in quality markets.  相似文献   
29.
Cucumber (Cucumis sativus L. 2n = 2x = 14), thatbelongs to Cucurbitaceae family, is one of majorvegetables with a planting area second to that of to-mato in the world[1]. Due to its economical importanceplant breeders and geneticists have paid much atten-tion to the genetic study on this important vegetablecrop, but the research progress in cucumber is muchless than that in tomato. In 1990, Pierce[2] reviewed allthe reported genes of cucumber that had been geneti-cally analyzed since the 1930…  相似文献   
30.
SRAP技术研究烟粉虱遗传多样性   总被引:2,自引:1,他引:1  
采用AFLP、SRAP2种标记方法分别对2个烟粉虱Bemisia tabaci Gennadius种群(一品红、甘蓝)的多态性进行分析。结果表明,(1)2种方法平均每对引物组合产生的条带数分别为29.4和21.8。(2)AFLP法每对引物组合产生10~23条多态性带,平均17.20条,多态性带的比例平均为57.93%。SRAP法每对引物组合产生5~18条多态性带,平均13.3条,多态性带的比例平均为60.59%。(3)前者的基因多样性范围为0.1503~0.2838,平均为0.2297;后者的基因多样性范围为0.0977~0.2911,平均为0.2332。证明利用SRAP技术和AFLP技术研究烟粉虱的遗传多样性是有效的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号