首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6298篇
  免费   621篇
  国内免费   588篇
  7507篇
  2024年   41篇
  2023年   274篇
  2022年   280篇
  2021年   482篇
  2020年   336篇
  2019年   429篇
  2018年   305篇
  2017年   255篇
  2016年   240篇
  2015年   313篇
  2014年   451篇
  2013年   481篇
  2012年   279篇
  2011年   320篇
  2010年   285篇
  2009年   355篇
  2008年   381篇
  2007年   311篇
  2006年   264篇
  2005年   207篇
  2004年   216篇
  2003年   161篇
  2002年   133篇
  2001年   120篇
  2000年   58篇
  1999年   72篇
  1998年   76篇
  1997年   50篇
  1996年   50篇
  1995年   56篇
  1994年   39篇
  1993年   52篇
  1992年   30篇
  1991年   16篇
  1990年   13篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   5篇
  1982年   13篇
  1981年   2篇
  1980年   4篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有7507条查询结果,搜索用时 15 毫秒
71.
R.R. Janghel  Y.K. Rathore 《IRBM》2021,42(4):258-267
ObjectivesAlzheimer's Disease (AD) is the most general type of dementia. In all leading countries, it is one of the primary reasons of death in senior citizens. Currently, it is diagnosed by calculating the MSME score and by the manual study of MRI Scan. Also, different machine learning methods are utilized for automatic diagnosis but existing has some limitations in terms of accuracy. So, main objective of this paper to include a preprocessing method before CNN model to increase the accuracy of classification.Materials and methodIn this paper, we present a deep learning-based approach for detection of Alzheimer's Disease from ADNI database of Alzheimer's disease patients, the dataset contains fMRI and PET images of Alzheimer's patients along with normal person's image. We have applied 3D to 2D conversion and resizing of images before applying VGG-16 architecture of Convolution neural network for feature extraction. Finally, for classification SVM, Linear Discriminate, K means clustering, and Decision tree classifiers are used.ResultsThe experimental result shows that the average accuracy of 99.95% is achieved for the classification of the fMRI dataset, while the average accuracy of 73.46% is achieved with the PET dataset. On comparing results on the basis of accuracy, specificity, sensitivity and on some other parameters we found that these results are better than existing methods.Conclusionsthis paper, suggested a unique way to increase the performance of CNN models by applying some preprocessing on image dataset before sending to CNN architecture for feature extraction. We applied this method on ADNI database and on comparing the accuracies with other similar approaches it shows better results.  相似文献   
72.
《IRBM》2021,42(5):345-352
Available clinical methods for heart failure (HF) diagnosis are expensive and require a high-level of experts intervention. Recently, various machine learning models have been developed for the prediction of HF where most of them have an issue of over-fitting. Over-fitting occurs when machine learning based predictive models show better performance on the training data yet demonstrate a poor performance on the testing data and the other way around. Developing a machine learning model which is able to produce generalization capabilities (such that the model exhibits better performance on both the training and the testing data sets) could overall minimize the prediction errors. Hence, such prediction models could potentially be helpful to cardiologists for the effective diagnose of HF. This paper proposes a two-stage decision support system to overcome the over-fitting issue and to optimize the generalization factor. The first stage uses a mutual information based statistical model while the second stage uses a neural network. We applied our approach to the HF subset of publicly available Cleveland heart disease database. Our experimental results show that the proposed decision support system has optimized the generalization capabilities and has reduced the mean percent error (MPE) to 8.8% which is significantly less than the recently published studies. In addition, our model exhibits a 93.33% accuracy rate which is higher than twenty eight recently developed HF risk prediction models that achieved accuracy in the range of 57.85% to 92.31%. We can hope that our decision support system will be helpful to cardiologists if deployed in clinical setup.  相似文献   
73.
Climate sensitivity of vegetation has long been explored using statistical or process‐based models. However, great uncertainties still remain due to the methodologies’ deficiency in capturing the complex interactions between climate and vegetation. Here, we developed global gridded climate–vegetation models based on long short‐term memory (LSTM) network, which is a powerful deep‐learning algorithm for long‐time series modeling, to achieve accurate vegetation monitoring and investigate the complex relationship between climate and vegetation. We selected the normalized difference vegetation index (NDVI) that represents vegetation greenness as model outputs. The climate data (monthly temperature and precipitation) were used as inputs. We trained the networks with data from 1982 to 2003, and the data from 2004 to 2015 were used to validate the models. Error analysis and sensitivity analysis were performed to assess the model errors and investigate the sensitivity of global vegetation to climate change. Results show that models based on deep learning are very effective in simulating and predicting the vegetation greenness dynamics. For models training, the root mean square error (RMSE) is <0.01. Model validation also assure the accuracy of our models. Furthermore, sensitivity analysis of models revealed a spatial pattern of global vegetation to climate, which provides us a new way to investigate the climate sensitivity of vegetation. Our study suggests that it is a good way to integrate deep‐learning method to monitor the vegetation change under global change. In the future, we can explore more complex climatic and ecological systems with deep learning and coupling with certain physical process to better understand the nature.  相似文献   
74.

In the oceanic midwater environment, most animals have evolved an extraordinary anti‐predation behavior using bioluminescent countershading (counterillumination) to help them remain cryptic to visual predators. For the midwater penaeid shrimp, Sergestes similis, the interaction of both hormonal and neural systems may be involved in the control of counterillumination. S. similis responds to downward‐directed illumination, detected by the eyes, with light emission from five hepatic light organs. Dark‐adapted specimens undergo a slow induction process prior to production of the conventional counterillumination response. The induction of bio‐luminescence may involve a hormonal pathway mediated by the light‐adapting retinal distal pigment dispersing hormone. Once induced, the rapid control of counterillumination may involve a neural pathway. Because counterilluminating animals directly respond to their optical environment, an understanding of the control of bioluminescence provides an insight into the poorly understood visual processing capabilities of deep‐sea animals.  相似文献   
75.
The ability of the Movement Deviation Profile (MDP) and Gait Deviation Index (GDI) to detect gait changes was compared in a child with cerebral palsy who underwent game training. Conventional gait analysis showed that sagittal plane angles became mirrored about normality after training. Despite considerable gait changes, the GDI showed minimal change, while the MDP detected a difference equal to a shift between 10-9 on the Functional Assessment Questionnaire scale. Responses of the GDI and MDP were examined during a synthetic transition of the patient's curves from before intervention to a state mirrored about normality. The GDI showed a symmetric response on the two opposite sides of normality but the neural network based MDP gave an asymmetric response reflecting faithfully the unequal biomechanical consequences of joint angle changes. In conclusion, the MDP can detect altered gait even if the changes are missed by the GDI.  相似文献   
76.
77.
Abstract

A classical question in systems biology is to find a Boolean model which is able to predict the observed responses of a signaling network. It has been previously shown that such models can be tailored based on experimental data. While fitting a minimum-size network to the experimentally observed data is a natural assumption, it can potentially result in a network which is not so robust against the noises in the training dataset. Indeed, it is widely accepted now that biological systems are generally evolved to be very robust. Therefore, in the present work, we extended the classical formulation of Boolean network construction in order to put weight on the robustness of the created network. We show that our method results generally in more relevant networks. Consequently, considering robustness as a design principle of biological networks can result in more realistic models.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号