首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   10篇
  国内免费   6篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   9篇
  2019年   12篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   19篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
排序方式: 共有182条查询结果,搜索用时 250 毫秒
91.
92.
93.
The ubiquitin–proteasome pathway is an important regulatory system for the lifetime of inducible nitric-oxide synthase (iNOS), a high-output isoform compared to neuronal NOS (nNOS) and endothelial NOS (eNOS), to prevent overproduction of NO that could trigger detrimental effects such as cytotoxicity. Two E3 ubiquitin ligases, Elongin B/C−Cullin-5−SPRY domain- and SOCS box-containing protein [ECS(SPSB)] and the C-terminus of Hsp70–interacting protein (CHIP), recently have been reported to target iNOS for proteasomal degradation. However, the significance of each E3 ubiquitin ligase for the proteasomal degradation of iNOS remains to be determined. Here, we show that ECS(SPSB) specifically interacted with iNOS, but not nNOS and eNOS, and induced the subcellular redistribution of iNOS from dense regions to diffused expression as well as the ubiquitination and proteasomal degradation of iNOS, whereas CHIP neither interacted with iNOS nor had any effects on the subcellular localization, ubiquitination, and proteasomal degradation of iNOS. These results differ from previous reports. Furthermore, the lifetime of the iNOS(N27A) mutant, a form of iNOS that does not bind to ECS(SPSB), was substantially extended in macrophages. These results demonstrate that ECS(SPSB), but not CHIP, is the master regulator of the iNOS lifetime.  相似文献   
94.
The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor of cytokine signaling 6 (SOCS6) is a member of the SOCS family of E3 ubiquitin ligases that can interact with c-KIT and suppress c-KIT-dependent pathways. Here, we analyzed the molecular mechanisms that determine SOCS6 substrate recognition. Our results show that the SH2 domain of SOCS6 is essential for its interaction with c-KIT pY568. The 1.45-Å crystal structure of SOCS6 SH2 domain bound to the c-KIT substrate peptide (c-KIT residues 564–574) revealed a highly complementary and specific interface giving rise to a high affinity interaction (Kd = 0.3 μm). Interestingly, the SH2 binding pocket extends to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6 as a feedback inhibitor of SCF-dependent signaling and provides molecular data to account for target specificity within the SOCS family of ubiquitin ligases.  相似文献   
95.
Because of their genetically determined capacity to respond to pro-inflammatory stimuli, keratinocytes have a crucial role in the pathogenesis of psoriasis. Upon IFN-γ and TNF-α exposure, psoriatic keratinocytes express exaggerated levels of inflammatory mediators, and show aberrant hyperproliferation and terminal differentiation. The thickening of psoriasic skin also results from a peculiar resistance of keratinocytes to cytokine-induced apoptosis. In this study, we investigated on the molecular mechanisms concurring to the resistance of psoriatic keratinocytes to cell death, focusing on the role having suppressor of cytokine signaling (SOCS)1 and SOCS3, two molecules abundantly expressed in IFN-γ/TNF-α-activated psoriatic keratinocytes, in sustaining anti-apoptotic pathways. We found that SOCS1 and SOCS3 suppress cytokine-induced apoptosis by sustaining the activation of the PI3K/AKT pathway in keratinocytes. The latter determines the activation of the anti-apoptotic NF-κB cascade and, in parallel, the inhibition of the pro-apoptotic BAD function in keratinocytes. For the first time, we report that phosphorylated AKT and phosphorylated BAD are strongly expressed in lesional psoriatic skin, compared with healthy or not lesional skin, and they strictly correlate to the high expression of SOCS1 and SOCS3 molecules in the psoriatic epidermis. Finally, the depletion of SOCS1 and SOCS3, as well as the chemical inactivation of PI3K activity in psoriatic keratinocytes, definitively unveils the role of PI3K/AKT cascade on the resistance of diseased keratinocytes to apoptosis.  相似文献   
96.
Dysfunctional insulin signaling is a key component of type 2 diabetes. Little is understood of the effects of systemic diabetes on retinal insulin signaling. A number of agents are used to treat patients with type 2 diabetes to normalize glucose levels and improve insulin signaling; however, little has been done to investigate the effects of these agents on retinal insulin signal transduction. We hypothesized that pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, would normalize retinal insulin signal transduction through reduced tumor necrosis factor α (TNFα) and suppressor of cytokine signaling 3 (SOCS3) activities in whole retina and retinal endothelial cells (REC) and Müller cells. To test this hypothesis, we used the BBZDR/Wor type 2 diabetic rat model, as well as REC and Müller cells cultured in normoglycemia and hyperglycemic conditions, to investigate the effects of pioglitazone on TNFα, SOCS3, and downstream insulin signal transduction proteins. We also evaluated pioglitazone''s effects on retinal function using electroretinogram and markers of apoptosis. Data demonstrate that 2 months of pioglitazone significantly increased electroretinogram amplitudes in type 2 diabetic obese rats, which was associated with improved insulin receptor activation. These changes occurred in both REC and Müller cells treated with pioglitazone, suggesting that these two cell types are key to insulin resistance in the retina. Taken together, these data provide evidence of impaired insulin signaling in type 2 diabetes rats, which was improved by increasing PPARγ activity. Further investigations of PPARγ actions in the retina may provide improved treatment options.  相似文献   
97.
The intracellular negatively regulatory mechanism which affects IL-1β-induced MUC8 gene expression remains unclear. We found that SOCS3 overexpression suppressed IL-1β-induced MUC8 gene expression in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1β-induced MUC8 gene expression. Sequentially activated ERK1/2, RSK1, and CREB by IL-1β were not affected by SOCS3, indicating that SOCS3 has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the absence of IL-1β, whereas IL-1β treatment dissociated the direct binding of SOCS3 and NonO. A dominant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO. Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by IL-1β compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating the action of NonO.  相似文献   
98.
99.
100.
目的:探讨microRNA-155(miR-155)对骨肉瘤Saos2细胞增殖、侵袭和迁移的影响以及其作用机制。方法:利用实时荧光定量(qRT-PCR)实验检测miR-155在正常成骨细胞与骨肉瘤Saos2细胞中的表达水平,以及miR-155-mimic、miR-155-inhibitor的转染效率。采用CCK-8实验检测细胞的增殖能力,Transwell实验和划痕实验分别检测Saos2细胞的侵袭和迁移能力,Western blot检测细胞内的STAT3磷酸化水平以及SOCS1表达水平,双荧光素酶报告基因实验进行靶基因验证。结果:miR-155在骨肉瘤Saos2细胞中表达明显高于正常成骨细胞(P0.001)。在分别转染miR-155-mimic和miR-155-inhibitor后,Saos2细胞内miR-155表达水平明显上调和下降(P0.001)。过表达miR-155可促进Saos2细胞增殖、侵袭和迁移,降低SOCS1的蛋白水平,上调STAT3的磷酸化水平,差异均具有统计学意义。相反,降低miR-155水平可抑制Saos2细胞的增殖、侵袭和迁移能力,差异均具有统计学意义。结论:骨肉瘤Saos2细胞中高表达的miR-155可以通过抑制SOCS1表达来激活STAT3信号通路进而促进细胞的增殖、侵袭和迁移,因此,靶向抑制miR-155表达可以作为潜在治疗骨肉瘤的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号