首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   10篇
  国内免费   6篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   9篇
  2019年   12篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   19篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
排序方式: 共有182条查询结果,搜索用时 218 毫秒
141.
The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a 15N/13C-labeled sample. The Neur NHR1 domain adopts a characteristic β-sandwich fold, consisting of a concave five-stranded antiparallel β-sheet and a convex seven-stranded antiparallel β-sheet. The long loop (L6) between the β6 and β7 strands covers the hydrophobic patch on the concave β-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the β-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison of the Neur NHR1 domain with the first NHR domain of the human KIAA1787 protein, which is from another NHR subfamily and does not bind to the 20-residue Tom peptide, suggested the critical amino acid residues for the interactions between the Neur NHR1 domain and the Tom peptide. The present structural study will shed light on the role of the Neur NHR1 domain in the Notch signaling pathway.  相似文献   
142.
研究HCV核心蛋白对干扰素α诱导的抗病毒分子PKR和2′-5′OAS表达的影响及其机制。HCV核心蛋白表达质粒转染HepG2细胞,RT-PCR分析PKR和2′-5′OAS的mRNA水平变化,荧光素酶活性分析核心蛋白对ISRE介导的基因表达的影响;Western-blot分析SOCS3、STAT1及STAT1磷酸化水平的变化。在干扰素α刺激情况下,表达HCV核心蛋白的细胞中,PKR和2′-5′OAS的mRNA水平下降,ISRE介导的荧光素酶活性降低,STAT1磷酸化水平下降。此外,核心蛋白表达的细胞中SOCS3的mRNA和蛋白水平明显升高。结果表明,HCV核心蛋白可能通过激活SOCS3、抑制STAT1的磷酸化,从而下调干扰素α诱导的PKR和2′-5′OAS表达。  相似文献   
143.
144.
Proliferation and migration of keratinocytes are vital processes for the successful epithelization specifically after wounding. MiR‐221 has been identified to play a potential role in promoting wound regeneration by inducing blood vessel formation. However, little is known about the role of miR‐221 in the keratinocyte proliferation and migration during wound healing. An in vivo mice wound‐healing model was generated; the expression levels of miR‐221 were assessed by qRT‐PCR and fluorescence in situ hybridization. Initially, we found that miR‐221 was upregulated in the proliferative phase of wound healing. Further, in an in vivo wound‐healing mice model, targeted delivery of miR‐221 mimics accelerated wound healing. Contrastingly, inhibition of miR‐221 delayed healing. Additionally, we observed that overexpression of miR‐221 promoted cell proliferation and migration, while inhibition of miR‐221 had the opposite effects. Moreover, we identified SOCS7 as a direct target of miR‐221 in keratinocytes and overexpression of SOCS7 reversed the effects of miR‐221 in HaCaT keratinocytes. Finally, we identified that YB‐1 regulates the expression of miR‐221 in HaCaT keratinocytes. Overall, our experiments suggest that miR‐221 is regulated by YB‐1 in HaCaT keratinocytes and acts on SOCS7, thereby playing an important role in HaCaT keratinocyte proliferation and migration during wound healing.  相似文献   
145.
146.
Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F., is potent in anti-inflammation and immunosuppression. Dendritic cells (DC), one of important targets of immunosuppressants, play crucial roles in linking the innate immunity and adaptive immunity. However, the effects of triptolide on DC have not been fully elucidated. Chemoattraction of neutrophils and T cells by DC may favor their interactions and initiation of immune response. Here we demonstrate that triptolide significantly impairs DC-mediated chemoattraction of neutrophils and T cells both in vitro and in vivo by suppressing DC production of CC and CXC chemokines including MIP-1alpha, MIP-1beta, MCP-1, RANTES, TARC, and IP-10 in response to LPS. Furthermore, triptolide-mediated inhibition of NF-kappaB activation, Stat3 phosphorylation and increase of SOCS1 expression in DC may be involved in the inhibitory effect of triptolide. Our study provides a novel mechanistic explanation for the anti-inflammatory and immunosuppressive activities of triptolide.  相似文献   
147.
Interferon-alpha (IFN-alpha) is used for biotherapy of neuroendocrine carcinomas. The interferon-lambdas (IL-28A/B and IL-29) are a novel group of interferons. In this study, we investigated the effects of the IFN-lambdas IL-28A and IL-29 on human neuroendocrine BON1 tumor cells. Similar to IFN-alpha, incubation of BON1 cells with IL-28A (10 ng/ml) and IL-29 (10 ng/ml) induced phosphorylation of STAT1, STAT2, and STAT3, significantly decreased cell numbers in a proliferation assay, and induced apoptosis as demonstrated by poly(ADP-ribose) polymerase (PARP)-cleavage, caspase-3-cleavage, and DNA-fragmentation. Stable overexpression of suppressor of cytokine signaling proteins (SOCS1 and SOCS3) completely abolished the aforementioned effects indicating that SOCS proteins act as negative regulators of IFN-lambda signaling in BON1 cells. In conclusion, the novel IFN-lambdas IL-28A and IL-29 potently induce STAT signaling and antiproliferative effects in neuroendocrine BON1 tumor cells. Thus, IFN-lambdas may hint a promising new approach in the antiproliferative therapy of neuroendocrine tumors.  相似文献   
148.
149.
The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号