全文获取类型
收费全文 | 7807篇 |
免费 | 502篇 |
国内免费 | 286篇 |
专业分类
8595篇 |
出版年
2024年 | 4篇 |
2023年 | 107篇 |
2022年 | 165篇 |
2021年 | 204篇 |
2020年 | 168篇 |
2019年 | 203篇 |
2018年 | 302篇 |
2017年 | 154篇 |
2016年 | 168篇 |
2015年 | 208篇 |
2014年 | 543篇 |
2013年 | 565篇 |
2012年 | 332篇 |
2011年 | 472篇 |
2010年 | 515篇 |
2009年 | 571篇 |
2008年 | 569篇 |
2007年 | 581篇 |
2006年 | 515篇 |
2005年 | 433篇 |
2004年 | 351篇 |
2003年 | 326篇 |
2002年 | 288篇 |
2001年 | 144篇 |
2000年 | 125篇 |
1999年 | 105篇 |
1998年 | 122篇 |
1997年 | 73篇 |
1996年 | 44篇 |
1995年 | 52篇 |
1994年 | 48篇 |
1993年 | 36篇 |
1992年 | 25篇 |
1991年 | 9篇 |
1990年 | 11篇 |
1989年 | 8篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 6篇 |
1984年 | 3篇 |
1983年 | 6篇 |
1982年 | 7篇 |
1981年 | 6篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有8595条查询结果,搜索用时 15 毫秒
91.
Recent research has highlighted roles for non-coding RNA i7n the regulation of stress tolerance in bats. In this study, we propose that microRNA could also play an important role in neuronal maintenance during hibernation. To explore this possibility, RT-PCR was employed to investigate the expression of eleven microRNAs from the brain tissue of euthermic control and torpid bats. Results show that eight microRNAs (miR-21, -29b, -103, -107, -124a, -132, -183 and -501) increased (1.2–1.9 fold) in torpid bats, while the protein expression of Dicer, a microRNA processing enzyme, did not significantly change during torpor. Bioinformatic analysis of the differentially expressed microRNA suggests that these microRNAs are mainly involved in two processes: (1) focal adhesion and (2) axon guidance. To determine the extent of microRNA sequence conservation in the bat, we successfully identified bat microRNA from sequence alignments against known mouse (Mus musculus) microRNA. We successfully identified 206 conserved pre-microRNA sequences, leading to the identification of 344 conserved mature microRNA sequences. Sequence homology of the identified sequences was found to be 94.76 ± 3.95% and 98.87 ± 2.24% for both pre- and mature microRNAs, respectively. Results suggest that brain function related to the differentiation of neurons and adaptive neuroprotection may be under microRNA control during bat hibernation. 相似文献
92.
Wei Guang Steven J. Czinn Thomas G. Blanchard K. Chul Kim Erik P. Lillehoj 《Biochemical and biophysical research communications》2014
Helicobacter pylori infection of the stomach is associated with the development of gastritis, peptic ulcers, and gastric adenocarcinomas, but the mechanisms are unknown. MUC1 is aberrantly overexpressed by more than 50% of stomach cancers, but its role in carcinogenesis remains to be defined. The current studies were undertaken to identify the genetic mechanisms regulating H. pylori-dependent MUC1 expression by gastric epithelial cells. Treatment of AGS cells with H. pylori increased MUC1 mRNA and protein levels, and augmented MUC1 gene promoter activity, compared with untreated cells. H. pylori increased binding of STAT3 and MUC1 itself to the MUC1 gene promoter within a region containing a STAT3 binding site, and decreased CpG methylation of the MUC1 promoter proximal to the STAT3 binding site, compared with untreated cells. These results suggest that H. pylori upregulates MUC1 expression in gastric cancer cells through STAT3 and CpG hypomethylation. 相似文献
93.
Summary. An important sequence motif identified by sequence analysis is shared by the ACT domain family, which has been found in a number of diverse proteins. Most of the proteins containing the ACT domain seem to be involved in amino acid and purine synthesis and are in many cases allosteric enzymes with complex regulation enforced by the binding of ligands. Here we explore the current understanding of the ACT domain function including its role as an allosteric module in a selected group of enzymes. We will further describe in more detail three of the proteins where some understanding is available on function and structure: i) the archetypical ACT domain protein E. coli 3PGDH, which catalyzes the first step in the biosynthesis of L-Ser, ii) the bifunctional chorismate mutase/prephenate dehydratase (P-protein) from E. coli, which catalyzes the first two steps in the biosynthesis of L-Phe, and iii) the mammalian aromatic amino acid hydroxylases, with special emphasis on phenylalanine hydroxylase, which catalyzes the first step in the catabolic degradation of L-phenylalanine (L-Phe). The ACT domain is commonly involved in the binding of a small regulatory molecule, such as the amino acids L-Ser and L-Phe in the case of 3PGDH and P-protein, respectively. On the other hand, for PAH, and probably for other enzymes, this domain appears to have been incorporated as a handy, flexible small module with the potential to provide allosteric regulation via transmission of finely tuned conformational changes, not necessarily initiated by regulatory ligand binding at the domain itself.Current address: Protein Biophysics & Delivery, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Denmark. 相似文献
94.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation. 相似文献
95.
SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium‐triggered fusion 下载免费PDF全文
Tanmay A M Bharat Jörg Malsam Wim J H Hagen Andrea Scheutzow Thomas H Söllner John A G Briggs 《EMBO reports》2014,15(3):308-314
Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large‐scale, automated cryo‐electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+‐triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high‐energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp. 相似文献
96.
Vidal M 《FEBS letters》2005,579(8):1834-1838
A long-term goal of the field of interactome modeling is to understand how global and local properties of complex macromolecular networks impact on observable biological properties, and how changes in such properties can lead to human diseases. The information available at this stage of development of the field provides strong evidence for the existence of such interesting global and local properties, but also demonstrates that many more datasets will be needed to provide accurate models with increasingly predictive capacity. This review focuses on an early attempt at mapping a multicellular interactome network and on the lessons learned from that attempt. 相似文献
97.
98.
Roman G. Efremov Dmitry I. Gulyaev Gerard Vergoten Nikolai N. Modyanov 《Journal of Protein Chemistry》1992,11(6):665-675
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work. 相似文献
99.
New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism 总被引:1,自引:0,他引:1
ACBPs are implicated in acyl-CoA trafficking in many eukaryotes and some prokaryotes. Six genes encode proteins designated as AtACBP1-AtACBP6 in the Arabidopsis thaliana ACBP family. These ACBPs are conserved in the acyl-CoA-binding domain, but vary in size from 92 amino acids (10.4 kDa) to 668 amino acids (73.1 kDa), and are subcellularly localised to different compartments in plant cells. Results from in vitro binding assays show that their corresponding recombinant proteins exhibit differential binding affinities to acyl-CoA esters and phospholipids, implying that these ACBPs may have non-redundant biological functions in vivo. By using knockout/downregulated and overexpression lines of Arabidopsis ACBPs, recent investigations have revealed that in addition to their proposed roles in phospholipid metabolism, these ACBPs can influence plant development including early embryogenesis and leaf senescence, as well as plant stress responses including heavy metal resistance, oxidative stress, freezing tolerance and pathogen resistance. In this review, recent progress on the biochemical and functional analyses of Arabidopsis ACBPs, their links to metabolic/signalling pathways, and their potential applications in development of stress tolerance are discussed. 相似文献
100.
Huifang XuNicolas Raynal Stavros StathopoulosJohanna Myllyharju Richard W. FarndaleBirgit Leitinger 《Matrix biology》2011,30(1):16-26
The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor. 相似文献