首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69559篇
  免费   5525篇
  国内免费   2894篇
  2023年   953篇
  2022年   1345篇
  2021年   1881篇
  2020年   2259篇
  2019年   2985篇
  2018年   2733篇
  2017年   1971篇
  2016年   1924篇
  2015年   2202篇
  2014年   4112篇
  2013年   4994篇
  2012年   3150篇
  2011年   4114篇
  2010年   3058篇
  2009年   3416篇
  2008年   3622篇
  2007年   3569篇
  2006年   3076篇
  2005年   2756篇
  2004年   2426篇
  2003年   2134篇
  2002年   1867篇
  2001年   1249篇
  2000年   1051篇
  1999年   1096篇
  1998年   984篇
  1997年   890篇
  1996年   819篇
  1995年   772篇
  1994年   753篇
  1993年   676篇
  1992年   592篇
  1991年   540篇
  1990年   428篇
  1989年   387篇
  1988年   345篇
  1987年   333篇
  1986年   304篇
  1985年   556篇
  1984年   835篇
  1983年   680篇
  1982年   702篇
  1981年   545篇
  1980年   538篇
  1979年   438篇
  1978年   329篇
  1977年   323篇
  1976年   315篇
  1975年   256篇
  1973年   229篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Compound 26 is more potent against Escherichia coli. and 24 is more active against Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, and Shigella flexneri than the standard drug ciprofloxacin. Moreover, of all the compounds tested, 26 is more effective against Aspergillus flavus and Mucor, than the standard drug fluconazole.  相似文献   
22.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
23.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
24.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
25.
《Cell》2021,184(25):6081-6100.e26
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   
26.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
27.
The cytogenetic effect of zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, was evaluated in vivo, in mouse bone marrow cells, by assessing the percentage of cells bearing different chromosome aberrations. The studies included different conditions for animal treatment, as follows: (1) single intraperitoneal (ip) injection, (2) repeated ip injections, (3) pre-treatment for 24 h with Vitamin E (Vit E), and (4) pre-treatment for 4 h with 17β-estradiol (17β-Est) or progesterone (Prog). ZEN induced different types of chromosome aberrations, which was concentration-dependent (2–20 mg/kg bw). These doses corresponded to 0.4–4% of the LD50 in the mouse. Interestingly, when the dose of ZEN (40 mg/kg) was fractionated into four equivalent doses (4 × 10 mg/kg bw), into three doses (15 + 10 + 15 mg/kg bw), or into two equivalent doses (2 × 20 mg/kg bw), given every 24 h, the percentage of chromosome aberrations increased significantly. This finding suggests that ZEN proceeds by reversible binding on receptors that could become saturated, and that it damages the chromosomes in a ‘hit and go’ manner. Furthermore, pre-treatment of animals with 17β-estradiol or progesterone significantly decreased the percentage of chromosome aberrations, suggesting that (i) these hormones bind to the same cytoplasmic receptors transported into the nucleus to elicit DNA damage, (ii) they may play a role in preventing chromosome aberrations induced by ZEN. Similarly, Vit E prevented these chromosome aberrations indicating that Vit E, previously reported to prevent most of the toxic effects induced by ZEN, may also bind to the same receptors.  相似文献   
28.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3. Received: 17 October 1996 / Accepted: 19 November 1996  相似文献   
29.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
30.
Glucoraphasatin: Chemistry, occurrence, and biological properties   总被引:1,自引:0,他引:1  
Glucoraphasatin is an atypical glucosinolate mainly found in Raphanus sativus roots and sprouts. This review focuses on the chemistry, the occurrence, and the biological properties of glucoraphasatin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号