首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110890篇
  免费   8075篇
  国内免费   7517篇
  2023年   1546篇
  2022年   2211篇
  2021年   2861篇
  2020年   3189篇
  2019年   4389篇
  2018年   4001篇
  2017年   2987篇
  2016年   2931篇
  2015年   3213篇
  2014年   5814篇
  2013年   7311篇
  2012年   4385篇
  2011年   5765篇
  2010年   4480篇
  2009年   5349篇
  2008年   5663篇
  2007年   5867篇
  2006年   5240篇
  2005年   4589篇
  2004年   4025篇
  2003年   3739篇
  2002年   3310篇
  2001年   2484篇
  2000年   2054篇
  1999年   1989篇
  1998年   1897篇
  1997年   1674篇
  1996年   1560篇
  1995年   1570篇
  1994年   1492篇
  1993年   1241篇
  1992年   1181篇
  1991年   1114篇
  1990年   853篇
  1989年   854篇
  1988年   749篇
  1987年   741篇
  1986年   635篇
  1985年   1072篇
  1984年   1462篇
  1983年   1170篇
  1982年   1240篇
  1981年   988篇
  1980年   980篇
  1979年   851篇
  1978年   690篇
  1977年   626篇
  1976年   595篇
  1974年   428篇
  1973年   424篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
鹿科动物的染色体组型及其进化   总被引:14,自引:0,他引:14  
染色体是遗传物质的主要携带者。在动植物进化过程中,染色体在数量和结构上的变化,无疑对物种形成起重要的作用。染色体的变化往往引起基因的重新排列和遗传物质的增加或丢失。染色体在结构和数量上的差异还往往造成两个本来很相近的群体间的生殖隔离而形成新种。染色体组型和染色体的带型都代表着种的特性,它为不同动物在分类研究和确定其在进化过程中的位置提供了一个新的和重要的标准。可是,染色体的结构既是稳定的,同时又是可变的。染色体组型的改变是以染色体组的结构特点为基础  相似文献   
992.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min·mg)?1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min·mg)?1. When incubated in the presence of Mg[γ-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 μM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   
993.
The interaction between glucagon and dicaprylphosphatidylcholine (DCPC) was studied by fluorescence, circular dichroism and calorimetry, as well as by 1H- and 31P-nuclear magnetic resonance. The water-soluble lipid-protein complex was also characterized by gel filtration and ultracentrifugation. The complex appeared to be monodisperse by sedimentation equilibrium measurements, with a molecular weight of (4.55 ± 0.57)·104. This complex contained approximately 7 molecules of glucagon and 35 molecules of phospholipid. Proton-decoupled 31P-NMR spectra of the phospholipid in the lipid-protein complex display narrower resonances than those of sonicated vesicles of DCPC, and 1H-31P coupling could be detected in proton coupled spectra. These NMR results, together with gel-filtration results, suggest that glucagon ‘solubilizes’ phospholipid aggregates, forming a lipid-protein complex which is smaller than sonicated preparations of DCPC. 1H-NMR resonance of both the methionine methyl group (met-27) and the aromatic envelope of glucagon are broadened by the phospolipid, indicating that the C-terminal region and the aromatic residues are involved in the interaction with the phospholipid. Nuclear magnetic resonance titrations of the imidazole ring C(2) and C(4) protons of the histidine residue of glucagon show that DCPC lowers the pK of the imidazole. The alterations caused by the phospholipid in the far and near ultraviolet CD spectra of glucagon reflect, respectively, the increased helix content of the hormone and the fact that the aromatic residues are located in a more structured environment. The phospholipid also alters the fluorescence properties of glucagon, shifting the fluorescence emission maximum of the hormone to shorter wavelength, and enhancing its relative intensity. This suggests that the fluorophore is experiencing a more hydrophobic environment in the presence of the lipid. Binding of glucagon to the phospholipid was analysed by Scatchard plots of the enhancement of fluorescence caused by the phospholipid and showed that the equilibrium binding constants of glucagon to DCPC are (4.4 ± 0.5)·104M?1 and (7.5±0.5)·104M?1, at 15°C and 25°C, respectively. The average number of moles of phospholipid bound per mole of glucagon is 4.4±0.6. The isothermal enthalpy of reaction of glucagon with DCPC is ?20.5 kcal/mol of glucagon at 25°C and ?32.5 kcal/mol of glucagon at 15°C. The observed enthalpies can arise from glucagon-induced cyrstallization of the phospholipid, from the non-covalent interactions between the peptide and lipid as well as from the lipid-induced conformational change in the protein. These results demonstrate that, unlike the complexes formed between glucagon and phospholipids which form more stable bilayers, the complex formed between glucagon and DCPC is stable over a wide range of temperatures, including temperatures well above the phase transition.  相似文献   
994.
995.
A synthetic tetradecapeptide derived from the phosphorylation site of the beta-subunit of phosphorylase kinase (Arg-Thr-Lys-Arg-Ser-Gly-Ser-Val-Tyr-Glu-Pro-Leu-Lys-Ile) is a highly efficient substrate for the cAMP-dependent protein kinase, exhibiting a 36% decrease in the intrinsic tyrosine fluorescence on phosphorylation. The fluorescence changes in continuous assays were monitored to demonstrate the roles of protein kinase effectors (cAMP, the type II regulatory subunit, and the 8000-Da heat-stable inhibitor) in the regulation of the enzyme and to determine Km and Vmax. The phosphorylation reaction requires 1 mol ATP/mol peptide. Amino acid analysis demonstrates the presence of phosphoserine in the phosphorylated peptide. Auxiliary experiments show that tyrosine phosphorylation can also be detected fluorometrically and distinguished from serine or threonine phosphorylation.  相似文献   
996.
Robert Hootkins  Alan Bearden 《BBA》1983,723(1):16-29
Photosynthetic membrane fragments separated from whole cells of the green alga Dunaliella parva, were oriented by incorporation into multilayers on thin Mylar films. These partially dehydrated films were then examined by EPR spectroscopy for evidence of orientation of paramagnetic components. Five previously identified paramagnetic components, the reduced states of iron-sulfur clusters A and B, the intermediate acceptor X?, the reduced Rieske iron-sulfur cluster, and oxidized cytochrome b-559, displayed EPR signals showing orientation. In addition, several previously unknown paramagnetic components were also observed to be oriented. Four components, previously characterized in spinach chloroplast preparations, the iron-sulfur clusters A and B, the intermediate acceptor X?, and cytochrome b-559, were shown to be similar in the green alga, D. parva. The orientations of iron-sulfur clusters A and B, however, were determined unambiguously in this preparation; this was not possible in previous work with spinach. The heme plane orientation of cytochrome b-559 was found to be perpendicular to the membrane plane in agreement with the results in spinach preparations. A new photoinduced EPR signal with g values of 1.88, 1.97 and 2.12 was seen only in the oriented preparations and was indicative of a reduced iron-sulfur cluster with an orientation different from that of iron-sulfur cluster A or B. This suggests the existence of a previously unidentified acceptor in Photosystem I of green plants. These studies clearly show that the orientation of these components in bioenergetic membranes are conserved over a large span of evolutionary development and are, therefore, an important aspect of the mechanism of electron transfer.  相似文献   
997.
(1) Using asolectin (mixed soybean phospholipids) liposomes, extra lipid, with or without additional plastoquinone, has been introduced into isolated thylakoid membranes of pea chloroplasts. (2) Evidence for this lipid enrichment was obtained from freeze-fracture which indicated that a decrease in the numbers of EF and PF particles per unit area of membrane occurred with increasing lipid incorporation. The decrease was not due to loss of integral membrane polypeptides as judged by assay of cytochrome present or SDS-polyacrylamide gel electrophoresis of lipid-enriched membrane fractions. Moreover, the enrichment procedure did not lead to extraction of low molecular weight lipophilic membrane components or of thylakoid membrane lipids. (3) The introduction of phospholipids into the membrane affected steady-state electron transport. Inhibition of electron transport was observed when either water (Photosystem (PS) II + PS I) or duroquinol (PS I) was used as electron donor with methyl viologen as electron acceptor, and the degree of inhibition increased with higher enrichment levels. Introduction of exogenous plastoquinone with the additional lipid had little effect on whole-chain electron transport, but caused an increase in the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-sensitive rate of PS I electron transport. The inhibition was also detected by flash-induced oxidation-reduction changes of cytochrome f.  相似文献   
998.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   
999.
N,N′-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstitued mitochondrial cytochrome b-c1 complex. DCCD inhibits equally electron flow and proton translocation (i.e., the H+e? ratio is not affected) catalysed by the enzyme reconstituted into phospholipid vesicles. The inhibitory effects are accompanied by structural alterations in the polypeptide pattern of both isolated and reconstituted enzyme. Cross-linking was observed between subunits V (iron-sulfur protein) and VII, indicating that these polypeptides are in close proximity. A clear correlation was found between the kinetics of inhibition of enzymic activity and the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C]DCCD was also observed, to all subunits with the isolated enzyme and preferentially to cytochrome b with the reconstituted vesicles; in both cases, however, it was not correlated kinetically with the inhibition of the enzymic activity.  相似文献   
1000.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号