首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  104篇
  2024年   1篇
  2022年   12篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   7篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
81.
Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors are described. Compound 19 showed high inhibitory potency at SGLT1 (IC50?=?45?nM), and excellent potency at SGLT2 (IC50?=?1?nM). It also displayed excellent PK profiles in mice, rats, dogs and monkeys (F?=?78–107%). In SD rats, compound 19 treatments significantly reduced blood glucose levels in a dose-dependent manner. In ZDF rats, compound 19 displayed anti-hyperglycemic effect up to 24?h. Therefore, compound 19 may serve as valuable pharmacological tool, and potential use as a treatment for metabolic syndrome.  相似文献   
82.
Effects of angiotensin II (ANGII) on regulation of sodium/glucose cotransporter (SGLT1) activity were investigated in LLC-PK(1) cells, renal proximal epithelial cell line. ANGII inhibited alpha-[14C] methyl-D-glucopyranoside (AMG) uptake into LLC-PK(1) cells in a dose-dependent manner. This inhibition was based on a decrease in maximal transport rate (Vmax) of AMG from 2.20 nmol/mg protein/15 min to 1.19 nmol/mg protein/15 min, although apparent affinity constant (Km) did not alter. In western blot analysis, protein level of SGLT1 in brush border membrane (BBM) was decreased by ANGII, although total SGLT1 was not altered. In the aspect of intracellular signal transduction, ANGII blocked the formation of cAMP. Pertussis toxin, an inactivator of Gi protein that control intracellular cAMP level, completely prevented the decrease of AMG uptake caused by ANGII. 8-Br-cAMP, a cell membrane permeable cAMP analogue, increased AMG uptake and protein level of SGLT1 in BBM. Both wortmannin and LY294002 that are phosphatidylinositol (PI) 3-kinase inhibitors, inhibited the SGLT1 activity, and also attenuated the effect of 8-Br-cAMP on SGLT1 activity. Those inhibitors prevented the 8-Br-cAMP-induced expression of SGLT1 in plasma membrane. We conclude that ANGII plays an important role in post-translational regulation in SGLT1. Inhibition of SGLT1 translocation is suggested to be caused by inactivation of protein kinase A and decrease of PI 3-kinase activity.  相似文献   
83.
Johnston K  Sharp P  Clifford M  Morgan L 《FEBS letters》2005,579(7):1653-1657
The effect of different classes of dietary polyphenols on intestinal glucose uptake was investigated using polarised Caco-2 intestinal cells. Glucose uptake into cells under sodium-dependent conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols whereas aglycones and phenolic acids were without effect. Under sodium-free conditions, aglycones and non-glycosylated polyphenols inhibited glucose uptake whereas glycosides and phenolic acids were ineffective. These data suggest that aglycones inhibit facilitated glucose uptake whereas glycosides inhibit the active transport of glucose. The non-glycosylated dietary polyphenols appear to exert their effects via steric hindrance, and (-)-epigallochatechingallate, (-)-epichatechingallate and (-)-epigallochatechin are effective against both transporters.  相似文献   
84.
Diabetes mellitus is a chronic metabolic disease that occurs when the pancreas is not producing enough insulin or when the insulin that it does produce is not able to be used effectively in the body. This results in hyperglycemia and if the blood sugars are not controlled, then it can lead to serious damage of various body systems, especially the nerves and the blood vessels. Uncontrolled diabetes is a major cause of kidney failure, heart attacks, stroke and amputation. One of the most devastating complications for patients is diabetic retinopathy (DR) which represents the leading cause of preventable vision loss in people between 20 and 65 years of age. Sodium glucose transporter 2 (SGLT2) inhibitors have been shown to reduce the risk for cardiovascular and renal events, however literature highlighting their potential role to prevent DR is limited. We therefore used a relevant mouse model (Akimba) to explore the effects of the SGLT2 inhibitor, Empagliflozin (EMPA), on the development of diabetic retinal changes. Here we show that when given in the early stages of type 1 diabetes (T1D), EMPA reduced the weight loss usually associated with T1D, decreased diabetes-associated polydipsia, lowered fasting blood glucose levels, decreased kidney-to-body weight ratios and, most importantly in the current context, substantially reduced retinal abnormalities associated with DR. We show that EMPA reduces vascular leakage indicated by lower albumin staining in the vitreous humor and diminishes expression of the pathogenic factor VEGF in the retina. Additionally, EMPA significantly alters the retinal genetic signature. Our findings suggest that SGLT2 inhibition may be a useful therapeutic approach to prevent the development of DR and its severity if given early in the disease process.  相似文献   
85.
Positions 163, 166, and 173, within the putative external loop joining transmembrane segments IV and V of rabbit Na(+)/glucose cotransporter, form part of its Na(+) interaction and voltage-sensing domain. Since a Q170C mutation within this region exhibits anomalous behavior, its function was further investigated. We used Xenopus oocytes coinjected with mouse T-antigen to enhance Q170C expression, and the two-microelectrode voltage-clamp technique. For Q170C, alpha-methyl D-glucopyranoside, phloridzin, and Na(+) affinity values are equivalent to those of wild-type; but turnover is reduced approximately 50%. Decreased [Na(+)] reduces Q170C, but not wild-type, charge transfer. Q170C presteady-state currents exhibit three time constants, tau, identical to wild-type. MTSES decreases maximal alpha-methyl D-glucopyranoside-induced currents by approximately 64% and Na(+) leak by approximately 55%; phloridzin and Na(+) affinity are unchanged. MTSES also reduces charge transfer (dithiothreitol-reversible) and Q170C turnover by approximately 60-70%. MTSEA and MTSET protect against MTSES, but neither affect Q170C function. MTSES has no obvious effect on the tau-values. Q170A behaves the same as Q170C. The mutation Q170E affects voltage sensitivity and reduces turnover, but also appears to influence Na(+) interaction. We conclude that 1), glutamine 170 lies in the Na(+) pathway in rabbit Na(+)/glucose cotransporter and 2), altered polarity and charge at position 170 affect a cotransporter conformational state and transition, which is rate-limiting, but probably not associated with empty carrier reorientation.  相似文献   
86.
A series of C-aryl glucosides with various substituents at the 4′-position of the distal aryl ring have been synthesized and evaluated for inhibition of hSGLT1 and hSGLT2. Introduction of alkyl or alkoxy substituents at the 4′-position was found to improve SGLT2 potency, whereas introduction of a hydrophilic group at this position was deleterious. Compounds with alkoxy-, cycloalkoxy- or cycloalkenyloxy-ethoxy scaffolds exhibited good inhibitory activity and high selectivity toward SGLT2. Selected compounds were investigated for in vivo efficacy.  相似文献   
87.
88.
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
89.
To explore the effect and magnitude of effect of sodium‐glucose cotransporter‐2 (SGLT2) inhibitors on haematocrit and haemoglobin and the related cardiorenal benefits in patients with type 2 diabetes mellitus (T2DM), PubMed, Web of Science, CENTRAL and EMBASE were searched to identify eligible trials. Weighted mean differences (WMDs) with 95% confidence intervals (CIs) were calculated using a random‐effects model. Seventy‐eight studies were included in the meta‐analysis. SGLT2 inhibitors significantly increased haematocrit and haemoglobin levels compared with control (total WMD 2.27% [95% CI 2.08, 2.47] and 6.20 g/L [95% CI 5.68, 6.73], respectively). Except for dapagliflozin (p = 0.000), no notable dose‐dependent relationship was revealed for other SGLT2 inhibitors. The effect could be sustained or even slightly increased with long‐term therapy (coef. =0.009, 95% CI [0.005, 0.013], p = 0.000). In subgroup analyses, haematocrit elevation increased with higher body mass index (BMI). A greater haematocrit elevation could be observed in white patients or when compared with active controls. In conclusion, SGLT2 inhibitors increased haematocrit and haemoglobin levels in T2DM patients. Changes in haematocrit and haemoglobin seem to be surrogate markers of improvement in renal metabolic stress, and important mediators involved in cardiorenal protection.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号