首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5615篇
  免费   115篇
  国内免费   337篇
  2022年   18篇
  2021年   37篇
  2020年   25篇
  2019年   41篇
  2018年   61篇
  2017年   38篇
  2016年   50篇
  2015年   62篇
  2014年   216篇
  2013年   296篇
  2012年   224篇
  2011年   256篇
  2010年   207篇
  2009年   275篇
  2008年   281篇
  2007年   344篇
  2006年   339篇
  2005年   358篇
  2004年   259篇
  2003年   222篇
  2002年   139篇
  2001年   99篇
  2000年   103篇
  1999年   100篇
  1998年   96篇
  1997年   93篇
  1996年   107篇
  1995年   95篇
  1994年   94篇
  1993年   69篇
  1992年   86篇
  1991年   91篇
  1990年   73篇
  1989年   69篇
  1988年   46篇
  1987年   70篇
  1986年   63篇
  1985年   118篇
  1984年   186篇
  1983年   129篇
  1982年   104篇
  1981年   102篇
  1980年   80篇
  1979年   68篇
  1978年   61篇
  1977年   40篇
  1976年   25篇
  1975年   16篇
  1974年   8篇
  1973年   17篇
排序方式: 共有6067条查询结果,搜索用时 109 毫秒
941.
The scientific community has responded to the misidentification of human cell lines with validated methods to authenticate these cells; however, few assays are available for nonhuman cell line identification. We have developed a multiplex polymerase chain reaction assay that targets nine tetranucleotide short tandem repeat (STR) markers in the mouse genome. Unique profiles were obtained from seventy-two mouse samples that were used to determine the allele distribution for each STR marker. Correlations between allele fragment length and repeat number were determined with DNA Sanger sequencing. Genotypes for L929 and NIH3T3 cell lines were shown to be stable with increasing passage numbers as there were no significant differences in fragment length with samples of low passage when compared to high passage samples. In order to detect cell line contaminants, primers for two human STR markers were incorporated into the multiplex assay to facilitate detection of human and African green monkey DNA. This multiplex assay is the first of its kind to provide a unique STR profile for each individual mouse sample and can be used to authenticate mouse cell lines.  相似文献   
942.
The cell‐wall pectic domain rhamnogalacturonan‐II (RG‐II) is cross‐linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross‐linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron‐bridged) RG‐II, we confirmed that Pb2+ promotes H3BO3‐dependent dimerisation in vitro. H3BO3 concentrations as high as 50 mm did not prevent cross‐linking. For in‐vivo experiments, we successfully cultured ‘Paul's Scarlet’ rose (Rosa sp.) cells in boron‐free medium: their wall‐bound pectin contained monomeric RG‐II domains but no detectable dimers. Thus pectins containing RG‐II domains can be held in the wall other than via boron bridges. Re‐addition of H3BO3 to 3.3 μm triggered a gradual appearance of RG‐II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG‐II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG‐II dimers. We conclude that RG‐II normally becomes boron‐bridged during synthesis or secretion but not post‐secretion. Supporting this conclusion, exogenous [3H]RG‐II was neither dimerised in the medium nor cross‐linked to existing wall‐associated RG‐II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG‐II domains have a brief window of opportunity for boron‐bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron‐bridging does not readily occur.  相似文献   
943.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   
944.

Background

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive.

Results

In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol.

Conclusion

Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α.

General significance

To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.  相似文献   
945.

Background

Expression of tissue factor (TF) antigen and activity in platelets is controversial and dependent upon the laboratory and reagents used. Two forms of TF were described: an oxidized functional form and a reduced nonfunctional form that is converted to the active form through the formation of an allosteric disulfide. This study tests the hypothesis that the discrepancies regarding platelet TF expression are due to differential expression of the two forms.

Methods

Specific reagents that recognize both oxidized and reduced TF were used in flow cytometry of unactivated and activated platelets and western blotting of whole platelet lysates. TF-dependent activity measurements were used to confirm the results.

Results

Western blotting analyses of placental TF demonstrated that, in contrast to anti-TF#5, which is directed against the oxidized form of TF, a sheep anti-human TF polyclonal antibody recognizes both the reduced and oxidized forms. Flow cytometric analyses demonstrated that the sheep antibody did not react with the surface of unactivated platelets or platelets activated with thrombin receptor agonist peptide, PAR-1. This observation was confirmed using biotinylated active site-blocked factor (F)VIIa: no binding was observed. Likewise, neither form of TF was detected by western blotting of whole platelet lysates with sheep anti-hTF. Consistent with these observations, no FXa or FIXa generation by FVIIa was detected at the surface of these platelets. Similarly, no TF-related activity was observed in whole blood using thromboelastography.

Conclusion and significance

Platelets from healthy donors do not express either oxidized (functional) or reduced (nonfunctional) forms of TF.  相似文献   
946.
Secreted frizzled-related protein 3 (sFRP3), encoded by the gene FRZB, is a member of the sFRP family with important roles in inhibition of the Wnt signalling pathway through competitive binding of the Wnt receptor. Here, we investigated pig FRZB as a candidate gene for growth traits and identified three polymorphic sites, an insertion (A-532B) and two SNPs (G636A and C650T) in its 5′-UTR. The genotype distributions of G636A and C650T were significantly different among mini-type indigenous (Diannan Small-ear and Tibetan), normal indigenous (Laiwu and Huai), and introduced (Large Yorkshire and Landrace) breeds. In semi-quantitative PCR expression analysis, expression of FRZB mRNA was abundant in tissues of hypophysis, longissimus dorsi muscle, and adipose tissues, and low in the heart, hypothalamus, and brain. Quantitative determination of mRNA level and protein expression analysis were corresponding. The results demonstrated that FRZB gene expression in longissimus dorsi muscle and liver tissue was significantly higher in Diannan Small-ear and Tibetan pigs than in the Large Yorkshire breed (P < 0.05); however, in back fat tissue, the expression was significantly higher in Diannan Small-ear pig than in Tibetan or Large Yorkshire breeds (P < 0.05). Given the known growth and fat characteristics of the breeds, these results indicate that FRZB expression has a negative association with muscle growth and a positive association with fat deposition. In conclusion, FRZB may be a major candidate gene for growth traits in pigs.  相似文献   
947.
MicroRNAs (miRNAs) are small regulatory RNAs that play a significant role in eukaryotes by targeting mRNAs for cleavage or translational repression. Recent studies have also shown them to be associated with cellular changes following viral infection. Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. To study the involvement of miRNAs in the MEV infection process, we used Illumina's ultrahigh throughput approach to sequencing miRNA libraries from the feline kidney (F81) cell line before and after infection with MEV. Using this bioinformatics approach we identified 196 known mammalian miRNA orthologs belonging to 152 miRNA families in F81 cells. Additionally, 97 miRNA*s of these miRNAs were detected. As well as known miRNAs, 384 and 398 novel miRNA precursor candidates were identified in uninfected and MEV-infected F81 cells respectively that have not been reported in other mammals. In MEV-infected cells 3 miRNAs were significantly down-regulated and 4 up-regulated including 3 significantly. The majority (12 of 16) of randomly selected miRNA expression profiles by qRT-PCR were consistent with those identified by deep sequencing. A total of 88 miRNAs were predicted to target interferon-associated genes; 6 appear to target the 3′UTR of MEV-specific receptor transferring receptor mRNAs; and 8 to target the MEV mRNA coding region. No miRNAs coded by MEV itself were detected.  相似文献   
948.
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1–128, Nt) can interact with the C-terminal catalytic domain (aa 129–403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号