首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   2篇
  69篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
11.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is a neuronal phosphoprotein that is enriched in neurons which possess dopamine D1 receptors, particularly striatonigral neurons. In rat brain slices, the phosphorylation state of DARPP-32 is regulated by dopamine, acting through the dopamine D1 receptor and the adenylyl cyclase system. This study reports that chronic blockade (21 days) of either dopamine D1 receptors by SCH-23390 or dopamine D2 receptors by raclopride does not affect the concentrations of DARPP-32 in specific rat brain regions (striatum, thalamus, hippocampus, frontal cerebral cortical pole). Northern blot analysis indicates that the steady-state level of DARPP-32 mRNA in striatum is also unchanged by these treatments.  相似文献   
12.
Abstract: Cations of various size and charge were used as atomic scale probes of D1 and D2 dopamine receptors. Those cations that perturbed the binding of D1- and D2-selective dopamine receptor antagonists were identified by screening at 5 m M cation. Pseudo-noble-gas-configuration d-transition metals, such as zinc, exerted a complete inhibition of specific binding, whereas most other cations had little or no effect. The nature of zinc's actions was characterized by measuring the radioligand binding properties of [3H]SCH-23390 and [3H]methylspiperone to cloned D1A and D2L dopamine receptors in either the presence or absence of Zn2+. Zinc exerts a low-affinity, dose-dependent, EDTA-reversible inhibition of the binding of subtype-specific antagonists primarily by decreasing the ligands' affinity for their receptors. The mechanism of zinc inhibition appears to be allosteric modulation of the dopamine receptor proteins because zinc increases the dissociation constant ( K D) of ligand binding, Schild-type plots of zinc inhibition reach a plateau, and zinc accelerates antagonist dissociation rates. Here we demonstrate the effect of zinc on the binding of D1- and D2-selective antagonists to cloned dopamine receptors and show that the inhibition by zinc is through a dose-dependent, reversible, allosteric, two-state modulation of dopamine receptors.  相似文献   
13.
Estrogen impairs performance on some striatum-sensitive tasks of learning and memory. Evidence indicates that it may have these impairing effects by creating a bias to use hippocampally based strategies to solve tasks whether or not it is advantageous to do so. Estrogen may also exert direct effects in the striatum to affect performance on striatum-mediated procedural memory tasks. In spite of the robust effects that estrogen exerts on nigrostriatal dopaminergic neurons, the role of dopamine in the estrogen-induced effects on procedural memory tasks remains unexplored. The goal of the present study was to assess the independent and interactive effects of estrogen and dopamine antagonists on a striatum-mediated response learning task. Adult rats were ovariectomized and implanted with Silastic capsules containing 25% estradiol diluted in cholesterol or 100% cholesterol. Rats were trained to receive food rewards in an elevated plus maze by making a specified response (right or left turn). Following acquisition, dose-effect curves were determined for the D(1) dopamine receptor antagonist, SCH 23390, and the D(2) dopamine receptor antagonist, eticlopride. Estrogen did not significantly affect acquisition of the task and had no significant effect on the ability of SCH 23390 to disrupt performance on the task. However, estrogen significantly increased the sensitivity of the rats to the error-increasing effects of eticlopride. These results indicate that estrogen may differentially interact with D(1) and D(2) dopamine receptors to affect response learning. They also suggest that in addition to creating a bias to use hippocampally based strategies to solve tasks, estrogen may affect performance on procedural memory tasks through direct action on dopaminergic functioning.  相似文献   
14.
多巴胺D1和D2受体拮抗剂对针刺镇痛的增强   总被引:7,自引:2,他引:5  
在兔K~+透入测痛模型上,应用高选择性的D_1或D_2受体拮抗剂、观察其对针刺镇痛的影响。结果表明,iv.D_2受体拮抗剂氟哌啶醇和氯氮平加强针刺镇痛,且与剂量有关。icv.D_2受体拮抗剂domperidone和舒必利及D_1受体拮抗剂SCH23390,亦能加强针刺镇痛。本文对D_1和D_2受体拮抗剂在针刺镇痛中的作用进行了讨论。  相似文献   
15.
16.
Antiplatelet agents are a cornerstone in the treatment of acute arterial thrombotic events and in the prevention of thrombus formation. However, existing antiplatelet agents (mainly aspirin, the combination of aspirin and dipyridamole and clopidogrel) reduce the risk of vascular events only by about one quarter compared with placebo. As a consequence, more efficacious antiplatelet therapies with a reduced bleeding risk are needed. We give an overview of several new antiplatelet agents that are currently investigated in secondary stroke prevention: adenosine 5′-diphosphonate receptor antagonists, cilostazol, sarpogrelate, terutroban and SCH 530348. There are unique features in secondary stroke prevention that have to be taken into account: ischaemic stroke is a heterogeneous disease caused by multiple aetiologies and the blood–brain barrier is disturbed after stroke which may result in a higher intracerebral bleeding risk. Several small randomized trials indicated that the combination of aspirin and clopidogrel might be superior to antiplatelet monotherapy in the acute and early post-ischaemic phase. There is an ongoing debate about antiplatelet resistance. Decreasing response to aspirin is correlated independently with an increased risk of cardiovascular events. However, there is still no evidence from randomized trials linking aspirin resistance and recurrent ischaemic events. Similarly, randomized trials have not demonstrated a clinical significantly decreased antiplatelet effect by the concomitant use of clopidogrel and proton pump inhibitors. Nevertheless, a routine use of this drug combination is not recommended.  相似文献   
17.
Mori K  Kim J  Sasaki K 《Peptides》2011,32(2):246-252
Orexin (ORX) plays a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine (DA) pathway that projects into the nucleus accumbens (NAc) from the ventral tegmental area is deeply involved in the neural mechanisms underlying reward, drug abuse and motivation. A recent study demonstrated that ORX-immunopositive fibers densely project into the shell of the NAc (NAcSh), suggesting that the NAcSh might be a site of the interaction between the ORXergic and DAergic systems for reward-seeking behavior. Therefore, the electrophysiological effects of ORX-B and DA on NAcSh neurons were examined extracellularly in rat brain slice preparations. ORX-B excited approximately 78% of neurons tested and inhibited 4%, whereas DA excited 50% and inhibited 22% of NAcSh neurons. These excitations and inhibitions persisted during synaptic blockade in a low-Ca2+/high-Mg2+ solution. DA-induced excitation was attenuated by SCH23390 or sulpiride, whereas DA-induced inhibition was suppressed by sulpiride. Of the neurons that were excited by ORX-B, 71% and 18% were excited and inhibited by DA, respectively. In 63% of neurons that were excited by ORX-B, the simultaneous application of ORX-B and DA increased the firing rate to two times greater than ORX-B alone, whereas, the simultaneous application significantly decreased the neuronal firing rate by 73% in the remaining 37% compared to ORX-B. These results suggest that an interaction between the ORXergic and DAergic systems occurs in the NAcSh and that the NAcSh is involved in the neural mechanisms in which ORX participates in the regulation of reward-seeking behavior.  相似文献   
18.
The effects of short-term treatment (6 h) with selective D1 or D2 agonists and antagonists on the mRNA for proenkephalin in the medial and anterior aspects of the caudate-putamen and the nucleus accumbens were assessed by in situ hybridization histochemistry. Proenkephalin mRNA abundance was significantly changed in the striatum and accumbens in response to D2 receptor manipulation. D2 blockade with haloperidol or raclopride increased, whereas D2 stimulation with LY-171555 (D2 agonist) decreased, striatal and accumbens proenkephalin mRNA abundance. Antagonism of D1 receptor activity with SCH-23390 significantly decreased proenkephalin mRNA abundance in all brain regions. Concurrent administration of the D1 agonist SKF-38393 prevented the SCH-23390 effect in all brain areas. The data demonstrate that acute treatment with dopaminergic D2 agonists and antagonists affects proenkephalin mRNA abundance in the striatum and accumbens via a D2 receptor mechanism, consistent with the concept that D2 receptor function inhibits the synthesis of the mRNA encoding the enkephalin peptides. Moreover, D1 receptor activity, directly or indirectly, exerts modulatory effects on proenkephalin mRNA abundance in the striatum and nucleus accumbens.  相似文献   
19.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   
20.
Budding yeast shows a progressive decline in viability after entering stationary phase, a phenomenon known as chronological aging. We show here that the fission yeast Schizosaccharomyces pombe also undergoes chronological aging and that the process is regulated by genes controlling two related nutrient signalling pathways. The first pathway includes the serine/threonine cAMP-activated protein kinase Pka1 and the second pathway comprises the serine/threonine kinase Sck2, a homologue of Saccharomyces cerevisiae SCH9. A double mutant for pka1 and sck2 displayed an additive effect on prolonging the fission yeast lifespan, suggesting that these genes regulate related but independent pathways. These long-lived mutants also accumulated less reactive oxygen species and had a delayed initiation of apoptosis compared with wild-type cells. We also found that strains carrying pka1 deletion but not those with sck2 deletion gained resistance to oxidative stress due to exposure to H(2)O(2) or menadione. On the other hand, the additional increase in lifespan shown by the Deltapka1Deltasck2 double-mutant strain correlated with an increased resistance to both oxidative stress and heat shock. These results underscore the importance of nutrient signalling pathways and reactive oxygen species on organismal lifespan and establish S. pombe as a new model organism to study the molecular mechanisms underlying aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号