首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75602篇
  免费   5288篇
  国内免费   3505篇
  84395篇
  2024年   177篇
  2023年   1175篇
  2022年   1894篇
  2021年   2442篇
  2020年   2308篇
  2019年   2591篇
  2018年   2542篇
  2017年   1871篇
  2016年   1859篇
  2015年   2375篇
  2014年   4441篇
  2013年   5564篇
  2012年   3355篇
  2011年   4515篇
  2010年   3454篇
  2009年   3843篇
  2008年   3967篇
  2007年   4024篇
  2006年   3585篇
  2005年   3212篇
  2004年   2870篇
  2003年   2421篇
  2002年   2152篇
  2001年   1517篇
  2000年   1291篇
  1999年   1337篇
  1998年   1196篇
  1997年   1046篇
  1996年   996篇
  1995年   925篇
  1994年   841篇
  1993年   770篇
  1992年   665篇
  1991年   624篇
  1990年   483篇
  1989年   455篇
  1988年   415篇
  1987年   396篇
  1986年   364篇
  1985年   484篇
  1984年   650篇
  1983年   508篇
  1982年   558篇
  1981年   383篇
  1980年   400篇
  1979年   331篇
  1978年   253篇
  1977年   192篇
  1976年   161篇
  1975年   153篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Summary 2-Deoxy-d-glucose (2-DOG) uptake was tested in human fibroblast cultures in the presence and absence of vitamin E. Addition of 10 μg/ml vitamin E to the culture medium significantly reduced this uptake for 2-DOG concentrations of 0.005, to 10 mmol/liter (P≤0.01). The decrease of 2-DOG uptake was inversely proportional to the rise in 2-DOG concentration (P≤0.01). The presence of vitamin E reduced by 71% the average cellular level of lipid peroxides (expressed as thiobarbituric acid reactive substances) and caused a small but significant decrease in the cholesterol concentration (P≤0.01). These last results might explain the decrease in 2-DOG uptake observed in the presence of vitamin E.  相似文献   
102.
We have previously reported that intralobular salivary duct cells contain an amiloride-sensitive Na+ conductance (probably located in the apical membranes). Since the amiloride-sensitive Na+ conductances in other tight epithelia have been reported to be controlled by extracellular (luminal) Na+, we decided to use whole-cell patch clamp techniques to investigate whether the Na+ conductance in salivary duct cells is also regulated by extracellular Na+. Using Na+-free pipette solutions, we observed that the whole-cell Na+ conductance increased when the extracellular Na+ was increased, whereas the whole-cell Na+ permeability, as defined in the Goldman equation, decreased. The dependency of the whole-cell Na+ conductance on extracellular Na+ could be described by the Michaelis-Menten equation with a K m of 47.3 mmol/1 and a maximum conductance (G max) of 2.18 nS. To investigate whether this saturation of the Na+ conductance with increasing extracellular Na+ was due to a reduction in channel activity or to saturation of the single-channel current, we used fluctuation analysis of the noise generated during the onset of blockade of the Na+ current with 200 μmol/l 6-chloro-3,5-diaminopyrazine-2-carboxamide. Using this technique, we estimated the single channel conductance to be 4 pS when the channel was bathed symmetrically in 150 mmol/l Na+ solutions. We found that Na+ channel activity, defined as the open probability multiplied by the number of available channels, did not alter with increasing extracellular Na+. On the other hand, the single-channel current saturated with increasing extracellular Na+ and, consequently, whole-cell Na+ permeability declined. In other words, the decline in Na+ permeability in salivary duct cells with increasing extracellular Na+ concentration is due simply to saturation of the single-channel Na+ conductance rather than to inactivation of channel activity. Received: 27 July 1995/Revised: 7 December 1995  相似文献   
103.
Abstract: To investigate the route of axonal Ca2+ entry during anoxia, electron probe x-ray microanalysis was used to measure elemental composition of anoxic tibial nerve myelinated axons after in vitro experimental procedures that modify transaxolemmal Na+ and Ca2+ movements. Perfusion of nerve segments with zero-Na+/Li+-substituted medium and Na+ channel blockade by tetrodotoxin (1 µM) prevented anoxia-induced increases in Na and Ca concentrations of axoplasm and mitochondria. Incubation with a zero-Ca2+/EGTA perfusate impeded axonal and mitochondrial Ca accumulation during anoxia but did not affect characteristic Na and K responses. Inhibition of Na+-Ca2+ exchange with bepridil (50 µM) reduced significantly the Ca content of anoxic axons although mitochondrial Ca remained at anoxic levels. Nifedipine (10 µM), an L-type Ca2+ channel blocker, did not alter anoxia-induced changes in axonal Na, Ca, and K. Exposure of normoxic control nerves to tetrodotoxin, bepridil, or nifedipine did not affect axonal elemental composition, whereas both zero-Ca2+ and zero-Na+ solutions altered normal elemental content characteristically and significantly. The findings of this study suggest that during anoxia, Na+ enters axons via voltage-gated Na+ channels and that subsequent increases in axoplasmic Na+ are coupled functionally to extraaxonal Ca2+ import. Intracellular Na+-dependent, extraaxonal Ca2+ entry is consistent with reverse operation of the axolemmal Na+-Ca2+ exchanger, and we suggest that this mode of Ca2+ influx plays a general role in peripheral nerve axon injury.  相似文献   
104.
The effects of anti-peptide antibodies against the second extracellular loop of human M2 muscarinic receptor on transmembrane potentials and currents in guinea pig single ventricular cells were analyzed using whole-cell patch clamp technique. These effects were compared with those of the muscarinic receptor agonists carbachol and acetylcholine. The antibodies shortened the action potential duration in a dose-dependent manner. By using a ramp or step rectangular pulse protocol, it was found that the antibodies increased the outward K+ current and decreased the inward basal I Ca significantly. The reversal potential of both carbachol-and antibody-induced extra currents were close to –80 mV, being in proximity to the calculated Ek of –90 mV. A -adrenergic receptor agonist, isoprenaline, prolonged the action potential and increased the overshoot which could be inhibited by both antibody and carbachol. Isoprenaline increased inward Ica and outward Ik simultaneously. Both antibody and carbachol could significantly reduce the isoprenaline-stimulated ICa but not the isoprenaline-stimulated Ik. The antibody- or carbachol-induced outward K+ current and the depressant effects of antibody and carbachol on isoprenaline-stimulated Ica were partially antagonized by atropine. These results suggest that the anti-M2 muscarinic receptor antibodies display a stimulatory activity similar to muscarinic receptor agonist on the receptor-mediated electrophysiological events.  相似文献   
105.
Applications of intrinsic fluorescence measurements in the study of Ca2+-transport ATPases are reviewed. Since the initial reports showing that the fluorescence emission was sensitive to Ca2+ binding, a substantial amount of work has focused on the use of both steady-state and time-resolved fluorescence spectroscopy to investigate structure-function relationships in sarcoplasmic reticulum and plasma membrane Ca2+-ATPases. These studies have revealed ligand-induced conformational changes, as well as provided information on protein-protein, protein-solvent and/or protein-lipid interactions in different functional states of these proteins. The main results of these studies, as well as possible future prospects are discussed.  相似文献   
106.
The contribution of the alternative pathway to the respiration of suspension-cultured pear ( Pyrus communis cv. Passa Crasanne) cells was enhanced, often severalfold, within 2 to 4 days following the addition of cycloheximide, actinomycin D, or 2-(4-methyl-2,6-dinitroanalino)- N -methyl propionamide (D-MDMP). Concomitant inhibition of cellular protein synthesis by cycloheximide and actinomycin D was transient and incomplete. However, inhibition by D-MDMP was virtually complete (>97%) and persisted over several days. [35S]-labelling and polyacrylamide gel separation indicated that cycloheximide precluded the appearance of discernable new proteins in mitochondria. Probes with monoclonal antibodies revealed a conservation of alternative oxidase protein levels in the mitochondria of inhibitor-treated cells. The data, appraised within the complexities of cell-culture dynamics, lead to the conclusion that the observed increases in capacity for cyanide-resistant respiration are the consequence, likely indirect, of inhibited protein synthesis with resultant retention and activation of constitutive alternative oxidase.  相似文献   
107.
108.
Abstract: In this study, we immunohistochemically examined the several constituents of senile plaques (SPs) and cerebral amyloid angiopathy (CAA) in aged cynomolgus monkeys. Apolipoprotein E (apoE) deposited in all mature plaques and CAA, and in half of the diffuse plaques. Alpha-1-antichymotripsin (αACT) deposited in half of the mature plaques and in one third of the CAA. Amyloid precursor protein (APP), ubiquitin (Ub), and microtubule-associated protein-2 (MAP-2) accumulated in the swollen neurites of mature plaques. Glial fibrillary acidic protein (GFAP) was detected in the astrocytes and their processes surrounding the mature plaques. Tau was detected in neither the SPs nor CAA. Therefore, mature plaques involved extracellular Aβ, apoE, and αACT, and also astrocytes and swollen neurites. However, diffuse plaques involved only extracellular Aβ and apoE. Since these features, except for tau, were consistent with those in humans, this animal model will be useful for studying the pathogenesis of cerebral amyloid deposition.  相似文献   
109.
3-Mercaptopyruvate sulfurtransferase (E.C. 2.8.1.2; MST) is an enzyme believed to function in the endogenous cyanide (CN) detoxification system because it is capable of transferring sulfur from 3-mercaptopyruvate (3-MP) to CN, forming the less toxic thiocyanate (SCN). To date, 3-MP is the only known sulfur-donor substrate for MST. In an effort to increase the understanding of what chemical properties of 3-MP affect its utilization as a substrate, in vitro enzyme kinetic studies of MST were conducted using two mercaptic acids that are structurally related to 3-MP. Neither of these compounds was able to serve as a sulfur-donor substrate for MST. Inhibitor studies determined that 3-mercaptopropionic acid did not affect the Km of MST for 3-MP but did decrease Vmax and, thus, was determined to be a noncompetitive inhibitor. Alternatively, 2-mercaptopropionic acid 2-MPA decreased Km and Vmax and was determined to be an uncompetitive inhibitor of MST with respect to 3-MP. These data indicate that the α-keto group of 3-MP is necessary for its utilization as a substrate, and the inhibitor studies suggest that the position of the sulfur may also affect the binding of these compounds to the enzyme. These observations increase the understanding of what factors can affect the utilization of a compound as a sulfur-donor substrate for MST and may aid in the development of alternative sulfur-donor substrates for MST. © 1996 John Wiley & Sons, Inc.  相似文献   
110.
Commercial ruthenium red is often purified by a single recrystallization as described by Luft, J.H. (1971) Anat Rec 171, 347–368, which yields small amounts of material having an apparent molar extinction coefficient of 67,400 at 533 nm. A simple modification to the procedure dramatically improves the yield, allowing crystallization to be repeated. Three times recrystallized ruthenium red has an apparent extinction coefficient of 85,900, the highest value reported to date. Both crude and highly purified ruthenium red can be shown to inhibit reverse activity of the mitochondrial Ca2+ uniporter (uncoupled mitochondria), provided that care is taken to minimize and account for Ca2+ release through the permeability transition pore. Crude ruthenium red is 7–10 fold more potent than the highly purified material in this regard, on an actual ruthenium red concentration basis. The same relative potency is seen against forward uniport (coupled mitochondria), however, the I50 values are 10 fold lower for both the crude and purified preparations. These data demonstrate unambiguously that the energy state of mitochondria affects the sensitivity of the Ca2+ uniporter to ruthenium red preparations, and that both the forward and reverse reactions are subject to complete inhibition. The data suggest, however, that the active inhibitor may not be ruthenium redper se, but one or more of the other ruthenium complexes which are present in ruthenium red preparations.Abbreviations CCP carbonyl cyanide p-chlorophenylhydrazone - CSA cyclosporin A - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号