首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   5篇
  国内免费   38篇
  2023年   2篇
  2022年   5篇
  2021年   18篇
  2020年   18篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   10篇
  2013年   9篇
  2012年   1篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   21篇
  2007年   28篇
  2006年   30篇
  2005年   53篇
  2004年   33篇
  2003年   66篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
71.
SARS coronavirus, SCV, has been recently responsible of a sudden and widespread infection which caused almost 800 victims. The limited amount of SCV protein structural information is partially responsible of the lack of specific drugs against the virus. Coronavirus helicases are very conserved and peculiar proteins which have been proposed as suitable targets for antiviral drugs, such as bananins, which have been recently shown to inhibit the SCV helicase in vitro. Here, the quaternary structure of SCV helicase has been predicted, which will provide a solid foundation for the rational design of other antiviral helicase inhibitors.  相似文献   
72.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   
73.
Summary. Starting from a collection of 1386 druggable compounds obtained from the 3D pharmacophore search, we performed a similarity search to narrow down the scope of docking studies. The template molecule is KZ7088 (Chou et al., 2003, Biochem Biophys Res Commun 308: 148–151). The MDL MACCS keys were used to fingerprint the molecules. The Tanimoto coefficient is taken as the metric to compare fingerprints. If the similarity threshold was 0.8, a set of 50 unique hits and 103 conformers were retrieved as a result of similarity search. The AutoDock 3.011 was used to carry out molecular docking of 50 ligands to their macromolecular protein receptors. Three compounds, i.e., C28H34O4N7Cl, C21H36O5N6, and C21H36O5N6, were found that may be promising candidates for further investigation. The main feature shared by these three potential inhibitors as well as the information of the involved side chains of SARS Cov Mpro may provide useful insights for the development of potent inhibitors against SARS enzyme.  相似文献   
74.
Wan J  Sun W  Li X  Ying W  Dai J  Kuai X  Wei H  Gao X  Zhu Y  Jiang Y  Qian X  He F 《Proteomics》2006,6(9):2886-2894
Severe acute respiratory syndrome (SARS) is a severe infectious disease that has affected many countries and regions since 2002. A novel member of the coronavirus, SARS-CoV, has been identified as the causative agent. However, the pathogenesis of SARS is still elusive. In this study, we used 2-D DIGE and MS to analyze the protein profiles of plasma from SARS patients, in the search for proteomic alterations associated with the disease progression, which could provide some clues to the pathogenesis. To enrich the low-abundance proteins in human plasma, two highly abundant proteins, albumin and IgG, were first removed. By comparing the plasma proteins of SARS patients with those of a normal control group, several proteins with a significant alteration were found. The up-regulated proteins were identified as alpha-1 acid glycoprotein, haptoglobin, alpha-1 anti-chymotrypsin and fetuin. The down-regulated proteins were apolipoprotein A-I, transferrin and transthyretin. Most of the proteins showed significant changes (up- or down-regulated) in the progressive phase of disease, and there was a trend back to normal level during the convalescent phase. Among these proteins, the alterations of fetuin and anti-chymotrypsin were further confirmed by Western blotting. Since all the up-regulated proteins identified above are well-known inflammation inhibitors, these results strongly suggest that the body starts inflammation inhibition to sustain the inflammatory response balance in the progression of SARS.  相似文献   
75.
目的:通过检测SARS-CoV X4基因转染后T细胞细胞因子分泌的变化,研究SARS-CoV X4蛋白潜在的功能及其作用机制,并探讨其与SARS-CoV致病机制的关系。方法:利用RosetteSep分离法分离外周血T细胞,以Amaxa核转染仪将pEGFP-SARS-CoV X4真核表达载体转入T细胞,应用激光共聚焦显微镜观察其瞬时表达情况,流式细胞仪检测转染效率,CBA技术检测T细胞细胞因子。结果:SARS-CoV X4基因转染后12h得到了明显表达,共聚焦显微镜观察到EGFP绿色荧光表达,流式细胞仪检测其表达率为245;与空载体转染组相比,SARS-CoV X4基因转染能显著促进T细胞IL-6及TNF-α的分泌。结论:SARS-CoV X4蛋白可诱导T细胞分泌前炎症因子IL-6及TNT-α,SARS-CoV X4蛋白可能在SARS发病机制中起重要的作用。  相似文献   
76.
77.
The SARS-CoV spike protein, a glycoprotein essential for viral entry, is a primary target for vaccine and drug development. Two peptides denoted HR-N(SN50) and HR-C(SC40), corresponding to the Leu/Ile/Val-rich heptad-repeat regions from the N-terminal and C-terminal segments of the SARS-CoV spike S2 sequence, respectively, were synthesized and predicted to form trimeric assembly of hairpin-like structures. The polyclonal antibodies produced by recombinant S2 protein were tested for antigenicity of the two heptad repeats. We report here the first crystallographic study of the SARS spike HR-N/HR-C complex. The crystal belongs to the triclinic space group P1 and the data-set collected to 2.98 A resolution showed noncrystallographic pseudo-222 and 3-fold symmetries. Based on these data, comparative modeling of the SARS-CoV fusion core was performed. The immunological and structural information presented herein may provide a more detailed understanding of the viral fusion mechanism as well as the development of effective therapy against SARS-CoV infection.  相似文献   
78.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome (SARS) has been proposed as an attractive target for drug design. His41 and Cys145 were essential for the active site as the principal catalytic residues. In this study, we mutated the two sites, expressed four resulting mutants in Escherichia coli and characterized. All mutants showed undetectable activity in trans-cleavage assay. In addition, we introduced a 31-mer peptide containing an auto-cleavage site to the N-terminal of the proteases and found the peptide could be cleaved efficiently by 3CLsc itself, but, among the four mutants, only the mutant Cys145-->Ser showed residual activity as detected by the auto-cleavage assay. The data supported the proposition unequivocally that SARS-CoV 3CLpro was a member of serine proteases involving His41 and Cys145 residues at the active site. The auto-cleavage assay also provided a sensitive and reliable compensation to the traditional trans-cleavage assay.  相似文献   
79.
In order to stimulate the development of drugs against severe acute respiratory syndrome (SARS), based on the atomic coordinates of the SARS coronavirus main proteinase determined recently [Science 13 (May) (2003) (online)], studies of docking KZ7088 (a derivative of AG7088) and the AVLQSGFR octapeptide to the enzyme were conducted. It has been observed that both the above compounds interact with the active site of the SARS enzyme through six hydrogen bonds. Also, a clear definition of the binding pocket for KZ7088 has been presented. These findings may provide a solid basis for subsite analysis and mutagenesis relative to rational design of highly selective inhibitors for therapeutic application. Meanwhile, the idea of how to develop inhibitors of the SARS enzyme based on the knowledge of its own peptide substrates (the so-called "distorted key" approach) was also briefly elucidated.  相似文献   
80.
Zhang J  Meng B  Liao D  Zhou L  Zhang X  Chen L  Guo Z  Peng C  Zhu B  Lee PP  Xu X  Zhou T  Deng Z  Hu Y  Li K 《Molecular biotechnology》2003,25(2):107-112
A novel coronavirus was identified as the cause for severe acute respiratory syndrome (SARS). The complete sequence of SARS genome has provided an opportunity for the development of molecular diagnostic assays. To restrain further outbreak of SARS, the World Health Organization has posted several pairs of polymerase chain reaction (PCR) primers for early diagnosis and urged more research to be done on PCR protocols. Here we report a strategy for the de novo synthesis of PCR templates complimentary to the SARS virus genome, which has the advantage of working on PCR templates without concern about viral infection and also has the advantage that it can be used by those who do not have access to the SARS virus. This highly efficient and safe strategy for obtaining SARS gene fragments is useful for the development of PCR assays, as well as for the preparation of reliable positive controls for PCR testing kits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号