首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  国内免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   12篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
61.
Histone deacetylase (HDAC) inhibitors modulate various cellular functions including proliferation, differentiation, and apoptosis. Vorinostat (SuberAniloHydroxamic Acid, SAHA) is the first HDAC inhibitor approved by FDA for cancer treatment. However, SAHA distributes in cancer tissue and normal tissue in similar levels. It will be ideal to selectively deliver SAHA into cancer cells. Rapidly growing cancer cells have a great need of cholesterol. Low-density lipoprotein (LDL) is the major cholesterol carrier in plasma and its uptake is mediated by LDL-receptor (LDL-R), a glycoprotein overexpressed on the surface of cancer cells. Herein, we designed and synthesized a SAHA cholesterol conjugate, and further formed the conjugate containing particles with LDL as the carrier. The diameters of the particles were determined. The inhibitory activity of the particles carrying the conjugate was determined with cancer cell proliferation assay, and the hydrolysis of the conjugate by the enzymes in cancer cells was confirmed with LC–MS/MS.  相似文献   
62.
SAHA, an inhibitor of histone deacetylase activity, has been shown to sensitize tumor cells to apoptosis induced by TRAIL, a member of TNF-family. In this paper we investigated the effect of SAHA/TRAIL combination in two breast cancer cell lines, the ERα-positive MCF-7 and the ERα-negative MDA-MB231. Treatment of MDA-MB231 and MCF-7 cells with SAHA in combination with TRAIL caused detachment of cells followed by anoikis, a form of apoptosis which occurs after cell detachment, while treatment with SAHA or TRAIL alone did not produce these effects. The effects were more evident in MDA-MB231 cells, which were chosen for ascertaining the mechanism of SAHA/TRAIL action. Our results show that SAHA decreased the level of c-FLIP, thus favouring the interaction of TRAIL with the specific death receptors DR4 and DR5 and the consequent activation of caspase-8. These effects increased when the cells were treated with SAHA/TRAIL combination. Because z-IEDT-fmk, an inhibitor of caspase-8, prevented both the cleavage of the focal adhesion-kinase FAK and cell detachment, we suggest that activation of caspase-8 can be responsible for both the decrement of FAK and the consequent cell detachment. In addition, treatment with SAHA/TRAIL combination caused dissipation of ΔΨ(m), activation of caspase-3 and decrement of both phospho-EGFR and phospho-ERK1/2, a kinase which is involved in the phosphorylation of BimEL. Therefore, co-treatment also induced decrement of phospho-BimEL and a concomitant increase in the dephosphorylated form of BimEL, which plays an important role in the induction of anoikis. Our findings suggest the potential application of SAHA in combination with TRAIL in clinical trials for breast cancer.  相似文献   
63.
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites.  相似文献   
64.
65.
The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56±0.04) yields the respective nitroxide radical (pKa=9.1±0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24 h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2 mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号