首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25701篇
  免费   1454篇
  国内免费   1749篇
  2023年   334篇
  2022年   534篇
  2021年   632篇
  2020年   666篇
  2019年   938篇
  2018年   834篇
  2017年   621篇
  2016年   657篇
  2015年   774篇
  2014年   1433篇
  2013年   1806篇
  2012年   1123篇
  2011年   1514篇
  2010年   1173篇
  2009年   1294篇
  2008年   1446篇
  2007年   1424篇
  2006年   1270篇
  2005年   1140篇
  2004年   1019篇
  2003年   906篇
  2002年   790篇
  2001年   553篇
  2000年   524篇
  1999年   433篇
  1998年   375篇
  1997年   327篇
  1996年   288篇
  1995年   267篇
  1994年   280篇
  1993年   233篇
  1992年   236篇
  1991年   197篇
  1990年   168篇
  1989年   149篇
  1988年   130篇
  1987年   126篇
  1986年   124篇
  1985年   244篇
  1984年   316篇
  1983年   207篇
  1982年   233篇
  1981年   205篇
  1980年   189篇
  1979年   157篇
  1978年   134篇
  1977年   112篇
  1976年   104篇
  1975年   72篇
  1974年   83篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
31.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   
32.
The antimicrobial efficacy of zinc (Zn) salts (sulfate and acetate) against Streptococcus mutans (S. mutans) present in the oral cavity was tested in this study. The substantivity of Zn salts was assessed by determining the concentration of Zn in whole, unstimulated saliva and by measuring the magnitude of suppression of salivary S. mutans, 2h after rinsing. The concentration of Zn was measured by atomic absorption spectrometry (AAS) with electrothermal atomization (ET AAS) in saliva sampled before (basal) and 24h after mouth rinsing with different concentrations of Zn (0.1%, 0.5% and 1%) administrated as sulfate and acetate. The estimation of Zn levels in samples collected 30, 60, 90 and 120 min after rinsing was carried out by AAS with flame atomization (FAAS). Immediately after rinsing, the concentration of Zn in saliva sharply increased with respect to the baseline values (0.055+/-0.017 mg/L), followed by a sustained decrease, probably due to clearance of salivary flow or swallowing during sampling. A significant reduction (>87%) in the total mean S. mutans counts was found 2h after rinsing either with sulfate or acetate solutions, as evidence of the high substantivity and effectiveness of the Zn salts tested. A statistically significant inverse relationship (p<0.001 and the Pearson correlation coefficients between -34% and -50%) was found between Zn levels and the respective pH values measured in the samples collected 60 and 120 min after rinsing, sustaining the theory of bacterial glycolysis inhibition.  相似文献   
33.
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.  相似文献   
34.
《Current biology : CB》2020,30(24):4826-4836.e7
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   
35.
《Molecular cell》2020,77(6):1176-1192.e16
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   
36.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   
37.
TonB protein couples cytoplasmic membrane electrochemical potential to active transport of iron-siderophore complexes and vitamin B12 through high-affinity outer membrane receptors of Gram-negative bacteria. The mechanism of energy transduction remains to be determined, but important concepts have already begun to emerge. Consistent with its function, TonB is anchored in the cytoplasmic membrane by its uncleaved amino terminus while largely occupying the periplasm. Both the connection to the cytoplasmic membrane and the amino acid sequences of the anchor are essential for activity. TonB directly associates with a number of envelope proteins, among them the outer membrane receptors and cytoplasmic membrane protein ExbB. ExbB and TonB interact through their respective transmembrane domains. ExbB is proposed to recycle TonB to an active conformation following energy transduction to the outer membrane. TonB most likely associates with the outer membrane receptors through its carboxy terminus, which is required for function. In contrast, the novel prolinerich region of TonB can be deleted without affecting function. A model that incorporates this information, as well as tempered speculation, is presented.  相似文献   
38.
39.
《Developmental cell》2022,57(14):1694-1711.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   
40.
In the present study we have evaluated the antigenotoxic effects of Farnesol (FL) a 15-carbon isoprenoid alcohol against benzo (a) pyrene [B(a)P] (125 mg kg? 1.b.wt oral) induced toxicity. B(a)P administration lead to significant induction in Cytochrome P450 (CYP) content and aryl hydrocarbon hydrolase (AHH) activity (p < 0.001), DNA strand breaks and DNA adducts (p < 0.001) formation. FL was shown to suppress the activities of both CYP and AHH (p < 0.005) in modulator groups. FL pretreatment significantly (p < 0.001) restored depleted levels of reduced glutathione (GSH), quinone reductase (QR) and glutathione –S-transferase (GST). A simultaneous significant and at both the doses reduction was seen in DNA strand breaks and in in-vivo DNA adducts formation (p < 0.005), which gives some insight on restoration of DNA integrity. The results support the protective nature of FL. Hence present data supports FL as a future drug to preclude B (a) P induced toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号