全文获取类型
收费全文 | 11028篇 |
免费 | 621篇 |
国内免费 | 1039篇 |
专业分类
12688篇 |
出版年
2023年 | 121篇 |
2022年 | 195篇 |
2021年 | 213篇 |
2020年 | 236篇 |
2019年 | 316篇 |
2018年 | 301篇 |
2017年 | 274篇 |
2016年 | 306篇 |
2015年 | 269篇 |
2014年 | 524篇 |
2013年 | 698篇 |
2012年 | 439篇 |
2011年 | 540篇 |
2010年 | 486篇 |
2009年 | 596篇 |
2008年 | 706篇 |
2007年 | 671篇 |
2006年 | 593篇 |
2005年 | 514篇 |
2004年 | 497篇 |
2003年 | 428篇 |
2002年 | 372篇 |
2001年 | 290篇 |
2000年 | 277篇 |
1999年 | 226篇 |
1998年 | 186篇 |
1997年 | 182篇 |
1996年 | 139篇 |
1995年 | 139篇 |
1994年 | 134篇 |
1993年 | 111篇 |
1992年 | 110篇 |
1991年 | 76篇 |
1990年 | 83篇 |
1989年 | 59篇 |
1988年 | 59篇 |
1987年 | 47篇 |
1986年 | 51篇 |
1985年 | 128篇 |
1984年 | 184篇 |
1983年 | 118篇 |
1982年 | 126篇 |
1981年 | 101篇 |
1980年 | 102篇 |
1979年 | 94篇 |
1978年 | 77篇 |
1977年 | 70篇 |
1976年 | 63篇 |
1975年 | 50篇 |
1974年 | 57篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Nucleic acid binding activity of pns6 encoded by genome segment 6 of rice ragged stunt oryzavirus 总被引:1,自引:0,他引:1
Rice ragged stunt disease, caused by rice ragged stuntoryzavirus (RRSV), was first discovered in 1976–1977 inIndonesia and Philippines [1]. Subsequently the diseasewas found in most rice-growing countries in south-easternand far-eastern Asia [2] and may inflict heavy loss on thecrop. RRSV is the type species of the genus Oryzavirus in thefamily Reoviridae. The virus particle is icosahedral witha diameter of about 65–70 nm and the genome consistsof 10 double stranded RNA (dsRNA) segm… 相似文献
72.
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in μ-opioid receptor (MOR) activity when animals were acutely treated with the putative endocannabinoid noladin ether (NE). In this study, we clarified whether the decreased MOR activation caused by NE could be reversed by rimonabant in CB(1) receptor deficient mice. In functional [(35)S]GTPγS binding assays, we have elucidated that 0.1mg/kg of intraperitoneal (i.p.) rimonabant treatment prior to that of NE treatment caused further attenuation on the maximal stimulation of Tyr-d-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO), which is a highly specific MOR agonist. Similar inhibitory effects were observed when rimonabant was injected i.p. alone and when it was directly applied to forebrain membranes. These findings are cannabinoid receptor independent as rimonabant caused inhibition in both CB(1) single knockout and CB(1)/CB(2) double knockout mice. In radioligand competition binding assays we highlighted that rimonabant fails to displace effectively [(3)H]DAMGO from MOR in low concentrations and is highly unspecific on the receptor at high concentrations in CB(1) knockout forebrain and in their wild-type controls. Surprisingly, docking computational studies showed a favorable binding position of rimonabant to the inactive conformational state of MOR, indicating that rimonabant might behave as an antagonist at MOR. These findings were confirmed by radioligand competition binding assays in Chinese hamster ovary cells stably transfected with MOR, where a higher affinity binding site was measured in the displacement of the tritiated opioid receptor antagonist naloxone. However, based on our in vivo data we suggest that other, yet unidentified mechanisms are additionally involved in the observed effects. 相似文献
73.
74.
Shu-Miaw Chaw Huei Long Bin-Shin Wang Andrey Zharkikh Wen-Hsiung Lie 《Journal of molecular evolution》1993,37(6):624-630
The evolutionary position of the yew family, Taxaceae, has been very controversial. Some plant taxonomists strongly advocate excluding Taxaceae from the conifer order and raising its taxonomic status to a new order or even class because of its absence of seed cones, contrary to the case in the majority of conifers. However, other authors believe that the Taxaceae are not fundamentally different from the rest of the conifers except in that they possess the most reduced solitary-ovule cones. To resolve the controversy, we have sequenced the 18S rRNA genes from representative gymnosperms: Taxus mairei (Taxaceae), Podocarpus nakaii (Podocarpaceae), Pinus luchuensis (Pinaceae), and Ginkgo biloba (Ginkgoales). Our phylogenetic analysis of the new sequence data with the published 18S rRNA sequence of Zamia pumila (a cycad) as an outgroup strongly indicates that Taxus, Pinus, and Podocarpus form a monophyletic group with the exclusion of Ginkgo and that Taxus is more closely related to Pinus than to Podocarpus. Therefore, Taxaceae should be classified as a family of Coniferales. Our finding that Taxaceae, Pinaceae, and Podocarpaceae form a clade contradicts both the view that the uniovulate seed of Taxaceae is a primitive character and the view that the Taxaceae are descendants of the Podocarpaceae. Rather, the uniovulate seed of Taxaceae and that of some species of Podocarpus appear to have different origins, probably all reduced from multiovulate cones.
Correspondence to: W.-H. Li 相似文献
75.
76.
77.
For phylogenetic analysis of the higher fungi, we sequenced the nuclear small subunit rRNA (18S rRNA) gene fromTaphrina populina, the type species of the genusTaphrina, andProtomyces lactucae-debilis. The molecular phylogeny inferred from these 2 sequences and 75 sequences from the DNA data bank divided the Ascomycota into three major lineages: the hemiascomycetes, the euascomycetes, and the archiascomycetes, newly described herein. The former two lineages are monophyletic, whereas the archiascomycetes, which originated first and are comprised ofTaphrina, Protomyces, Saitoella, Schizosaccharomyces, andPneumocystis, may not be monophyletic. Among the archiascomycetes, theTaphrina/Protomyces branch is monophyletic. Confirmation of the archiascomycetes as a monophyletic taxonomic class will require comparison of additional genetically defined characters.This work was supported in part by grants 05454030 from the Ministry of Education, Science, and Culture of Japan (to J. S.) and 4369 from the Japan Society for the Promotion of Science Fellowship Programs (to H. N.). 相似文献
78.
The reaction-diffusion system of the neuromuscular junction has been modeled in 3D using the finite element package FEtk. The numerical solution of the dynamics of acetylcholine with the detailed reaction processes of acetylcholinesterases and nicotinic acetylcholine receptors has been discussed with the reaction-determined boundary conditions. The simulation results describe the detailed acetylcholine hydrolysis process, and reveal the time-dependent interconversion of the closed and open states of the acetylcholine receptors as well as the percentages of unliganded/monoliganded/diliganded states during the neuro-transmission. The finite element method has demonstrated its flexibility and robustness in modeling large biological systems. 相似文献
79.
The T-cell deficiency of nude mice is due to an abnormal differentiation of the thymus epithelium; it can be persistently corrected by grafting a neonatal thymus. However, grafted adult thymuses or epithelial thymuses are not repopulated by large numbers of host-derived lymphocytes, as is the case when a whole neonatal thymus is grafted. Furthermore, the repopulation of the spleen and lymph nodes by T cells is less pronounced than after whole neonatal thymus transplantation, and the restoration of the reactivity to T-cell mitogens is irregular. Therefore, the integrity and the age of the thymus graft are important for a good restoration of the T-lymphoid system of congenitally athymic animals. 相似文献
80.
Yalan Chen Zhangliu Du Zhe Weng Ke Sun Yuqin Zhang Qin Liu Yan Yang Yang Li Zhibo Wang Yu Luo Bo Gao Bin Chen Zezhen Pan Lukas Van Zwieten 《Global Change Biology》2023,29(18):5445-5459
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content. 相似文献