首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   4篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2014年   14篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
41.

Background

The effect of indomethacin (INDO) on Ca2 + mobilization, cytotoxicity, apoptosis and caspase activation and the potential protective effect of quercetin (QUE), resveratrol (RES) and rutin (RUT) were determined in Caco-2 cells.

Methods

Caco-2 cells were incubated with INDO in the presence or absence of QUE, RES or RUT. The concentrations of Ca2 + in the cytosol (Fluo-3 AM) and mitochondria (Rhod-2 AM) were determined as well as the cytotoxicity (MTT reduction and LDH leakage), apoptosis (TUNEL) and caspase-3 and 9 activities.

Results

INDO promoted Ca2 + efflux from the endoplasmic reticulum (ER), resulting in an early, but transient, increment of cytosolic Ca2 + at 3.5 min, followed by a subsequent increment of intra-mitochondrial Ca2 + at 24 min. INDO also induced cytotoxicity, apoptosis, and increased caspase activities and cytochrome c release. All these alterations were prevented by the inhibitors of the IP3R and RyR receptors, 2-Aminoethoxydiphenyl borate (2-APB) and dantrolene. QUE was the most efficient polyphenol in preventing Ca2 + mobilization induced by INDO and all of its consequences including cytotoxicity and apoptosis.

Conclusions

In Caco-2 cells, INDO stimulates ER Ca2 + mobilization, probably through the activation of IP3R and RyR receptors, and the subsequent entry of Ca2 + into the mitochondria. Polyphenols protected the cells against the Ca2 + mobilization induced by INDO and its consequences on cytotoxicity and apoptosis.

General significance

These results confirm the possibility of using polyphenols and particularly QUE for the protection of the gastroduodenal mucosa in subjects consuming NSAIDs.  相似文献   
42.
Cyclic ADP-ribose (cADPR), accumulated in pancreatic β-cells in response to elevated ATP levels after glucose stimulation, mobilizes Ca2+ from the endoplasmic reticulum through the ryanodine receptor (RyR) and thereby induces insulin secretion. We have recently demonstrated in an in vitro study that cADPR activates RyR through binding to FK506-binding protein 12.6 (FKBP12.6), an accessory protein of RyR. Here we generated FKBP12.6-deficient (FKBP12.6−/−) mice by homologous recombination. FKBP12.6−/− mice showed glucose intolerance coupled to insufficient insulin secretion upon a glucose challenge. Insulin secretion in response to glucose was markedly impaired in FKBP12.6−/− islets, while sulfonylurea- or KCl-induced insulin secretion was unaffected. No difference was found in the glucose oxidation rate between FKBP12.6−/− and wild-type islets. These results indicate that FKBP12.6 plays a role in glucose-induced insulin secretion downstream of ATP production, independently of ATP-sensitive K+ channels, in pancreatic β-cells.  相似文献   
43.
In smooth muscle, the ryanodine receptor (RyR) mediates Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store. Release may be regulated by the RyR accessory FK506-binding protein (FKBP12) either directly, as a result of FKBP12 binding to RyR, or indirectly via modulation of the activity of the phosphatase calcineurin or kinase mTOR. Here we report that RyR-mediated Ca(2+) release is modulated by FKBP12 in colonic but not aortic myocytes. Neither calcineurin nor mTOR are required for FKBP12 modulation of Ca(2+) release in colonic myocytes to occur. In colonic myocytes, co-immunoprecipitation techniques established that FKBP12 and calcineurin each associated with the RyR2 receptor isoform (the main isoform in this tissue). Single colonic myocytes were voltage clamped in the whole cell configuration and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) increases evoked by the RyR activator caffeine. Under these conditions FK506, which displaces FKBP12 (to inhibit calcineurin) and rapamycin, which displaces FKBP12 (to inhibit mTOR), each increased the [Ca(2+)](c) rise evoked by caffeine. Notwithstanding, neither mTOR nor calcineurin are required to potentiate caffeine-evoked Ca(2+) increases evoked by each drug. Thus, the mTOR and phosphatidylinositol 3-kinase inhibitor, LY294002, which directly inhibits mTOR without removing FKBP12 from RyR, did not alter caffeine-evoked [Ca(2+)](c) transients. Nor did inhibition of calcineurin by cypermethrin, okadaic acid or calcineurin inhibitory peptide block the FK506-induced increase in RyR-mediated Ca(2+) release. In aorta, although RyR3 (the main isoform), FKBP12 and calcineurin were each present, RyR-mediated Ca(2+) release was unaffected by either FK506, rapamycin or the calcineurin inhibitors cypermethrin and okadaic acid in single voltage clamped aortic myocytes. Presumably failure of FKBP12 to associate with RyR3 resulted in the immunosuppressant drugs (FK506 and rapamycin) being unable to alter the activity of RyR. The effects of these drugs are therefore, apparently dependent on an association of FKBP12 with RyR. Together, removal of FKBP12 from RyR augmented Ca(2+) release via the channel in colonic myocytes. Neither calcineurin nor mTOR are required for the FK506- or rapamycin-induced potentiation of RyR Ca(2+) release to occur. The results indicate that FKBP12 directly inhibits RyR channel activity in colonic myocytes but not in aorta.  相似文献   
44.
The ryanodine receptor type-I (RyR1) is one key player of the excitation-contraction coupling (E-CC) machinery. However, RyR1 expression in human skeletal muscle disuse and plasticity changes are not well documented. We studied the expression and the functional modifications of RyR1 following prolonged bed rest (BR) without and with exercise countermeasure (Resistive Vibration Exercise, RVE). Soleus biopsies were taken from a non-trained control (BR-CTRL) and trained (BR-RVE) group (each n = 10) before and after BR. In BR-CTRL group, a fibre type-specific immunopattern of RyR1 (type-I < type-II) was documented, and RyR1 immunofluorescence intensity and protein expression together with [(3)H]ryanodine binding were decreased after BR. In BR-RVE group, RyR1 immunosignals were increased and fiber type specificity was no longer present. RyR1 protein expression was unchanged, whereas [(3)H]ryanodine binding increased after BR. Confocal and biochemical analysis confirmed subcellular co-localisation and protein-protein interaction of RyR1 with nitric oxide (NO)-synthase type-1 (NOS1). S-nitrosylation of RyR1 was increased in BR-CTRLpost only, suggesting a reduction of RyR1 open channel probability by nitrosylation mechanisms following prolonged disuse. We conclude that following extended body deconditioning in bed rest, RVE countermeasure maintained normal RyR1 expression and nitrosylation patterns required for adequate E-CC in human performance control.  相似文献   
45.
细胞外Ca2+对爪蟾脑片神经元微抑制性突触后电流的调制   总被引:2,自引:0,他引:2  
Wang H  Cai HR 《生理学报》2003,55(5):599-606
应用盲法膜片钳全细胞记录技术,以爪蟾视顶盖神经元微抑制性突触后电流(miniature inhibitory postsyn-aptic currents,mIPSCs)为指标,观察了细胞外Ca^2 对爪蟾脑片神经元突触后mIPSC的调制。结果表明:用细胞外无钙或无钙含乙二醇双乙胺醚-N,N′-四乙酸(EGTA)(200nmol/L—2mmol/L)溶液灌流,均可使mIPSCs的发放频率降低;非特异性钙离子拮抗剂氯化铬(100μmol/L)也可使mIPSCs的频率降低;内质网钙泵抑制剂thapsigargin(TG)以及内质网ryanodine受体(RyR)激动剂ryanodine均可使mIPSCs频率升高,内质网RyR拮抗剂普鲁卡因则可降低mIPSCs的频率;磷脂酶C抑制剂U73122也可降低mIPSCs的频率,对三磷酸肌醇(inositol 1,4,5-triphosphate,IP3)水平有抑制作用的咖啡因亦可显著地降低mIPSCs,甚至完全抑制mIPSCs。从而表明:对突触前神经元及其末梢,细胞外钙离子可通过细胞膜上的钙通道进入细胞内,使细胞内钙浓度升高,突触前神经末梢释放出更多的神经递质。进而可能使突触后mIPSCs的频率增加;突触前细胞内钙储池上的Rya和IP3R均可介导钙从其中释放,并也可使突触前细胞内的钙离子浓度升高,进而可能使突触后mIPSCs的发放频率增加。  相似文献   
46.
Conventional methods of isolating and reconstituting ryanodine receptors (RyRs) from native membranes into proteoliposomes take a minimum of 2 days to complete. We have developed an alternative strategy that can be used to isolate and reconstitute functional RyRs in just 3 h with a similar degree of purification. RyRs isolated by this method display characteristic functional behaviour as assessed by radioligand binding and single channel analyses.  相似文献   
47.
The Ca(2+) mobilizing metabolite cyclic ADP-ribose has been shown to release Ca(2+) from intracellular ryanodine sensitive stores in many cells. However, the activation of the ryanodine receptor of skeletal muscle by cADP-ribose (cADPr) and its precursor and metabolite (beta-NAD(+) and ADPr) remains to be discussed. We studied the effect of ADPr on the Ca(2+) release channel of skeletal muscle RyR1 after incorporation of microsomes isolated from fast muscles of rat in planar lipid bilayers. We observed an increase in the electrophysiological activity of the channel after addition of ADPr (10 microM) at micromolar Ca(2+) concentrations, characterized by a time-lag. The increase in P(o) is mainly due to an increase in the open frequency. The long time course observed for the development of the ADPr effect may indicate that this activation induces a change in the conformation of the RyR1 channel, which increases its sensitivity to calcium.  相似文献   
48.
Postinfarction left ventricular remodeling leads to the functional decline of the left ventricle (LV). Since dihydropyridine receptor (DHPR), ryanodine receptor (RyR2), and sarco-endoplasmic reticulum (SR) Ca2+-ATPase2 (SERCA2a) play a major role in the contractility of the heart, the aim of our study was to evaluate the time course of changes in the expression of these proteins 1 day, 2 weeks and 4 weeks after myocardial infarction (MI). Myocardial infarction was produced by ligation of left anterior descending coronary artery of the rat. Transthoracic echocardiography was performed to characterize structural and functional changes after MI. To evaluate protein mRNA levels and the relative amount of proteins, real-time quantitative RT-PCR and Western blotting were used. LV ejection fraction and fractional shortening decreased significantly during the 4-week follow-up period (P < 0.001). Typical features of LV remodeling after MI were seen, with a decrease in anterior wall thickness (P < 0.001) and dilatation of the LV (P < 0.001). Expression of DHPR and RyR2 mRNAs decreased and Serca2a mRNA tended to decrease 1 day after MI (P < 0.001, P < 0.01 and P = 0.06, respectively), followed by recovery of the expression during the next 4 weeks. In the infarcted hearts the quantities of SERCA2 proteins in the LV were significantly decreased at the time of 4 weeks. In conclusion, MI was associated with transient decrease in the expression of the DHPR and RyR2 mRNAs and a reduced quantity of SERCA2 proteins in the LV. Since they have a key role in the contraction of the heart, changes in the expression of these proteins may be important regulators of LV systolic function after MI.  相似文献   
49.
Intracellular Ca2+-release channels (ICRCs) form a superfamily of genes that encompasses two distinct subfamilies: the inositol trisphosphate receptor and the ryanodine receptor genes, which encode the largest ion channels known today. During evolution from nematodes to man, mechanisms of gene duplication and divergence have increased the number of known ICRC genes, which have been gradually co-opted to contribute to the increasing complexity of intracellular Ca2+ signalling required for regulation of specialised eukaryotic cell activities.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号