首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   12篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   20篇
  2018年   6篇
  2017年   14篇
  2016年   8篇
  2015年   4篇
  2014年   14篇
  2013年   14篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   9篇
  1997年   4篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有203条查询结果,搜索用时 296 毫秒
101.
A body-atmosphere energy exchange model (BIODEX) using heat transfer theory and empirical relationships is described which predicts the change in body core temperature during exercise as an index of thermal strain. Index values may be interpreted as the length of the period of activity before the heat load on the body causes internal body temperature to rise to critical levels. The performance of the model tested under controlled laboratory conditions using human subjects was found to be reliable. BIODEX is used to show the thermal significance of midsummer climatic conditions in New Zealand for those jogging out-doors.  相似文献   
102.
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change.  相似文献   
103.
A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, kcr, which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion.  相似文献   
104.
Quadrupedal locomotion was mechanically studied for four species of primates, the chimpanzee, the rhesus macaque, the tufted capuchin, and the ring-tailed lemur, from low to high speeds of about two to ten times the anterior trunk length per second. A wide variety of locomotor patterns was observed during the high-speed locomotion of these primates. Positive correlations were observed between the peak magnitude of foot force components and speed. The differentiation of the foot force between the forelimb and the hindlimb did not largely change with a change of speed for each species. The vertical component and the accelerating component for the rhesus macaque were relatively large in the forelimb from low- to high-speed locomotion. The rhesus macaque, which habitually locomotes on the ground, differed in the quadrupedal locomotion from the other relatively arboreal primates, for which the hindlimb was clearly dominant in their dynamic force-producing distribution between the forelimbs and the hindlimbs. The previously reported locomotor difference, which was indicated among primates from the foot force pattern between the forelimb and the hindlimb during walking, also applied to high-speed locomotion.  相似文献   
105.
Investigations were carried out in 2003–04 within a project on trend biomonitoring of macrozoobenthos in the Hron River system. They were focused on blackfly assemblages of the Hron River (Slovakia), using the distribution patterns of blackflies (18 species) from 14 sites, representing a fluent transition from epirithral to epipotamal. Two main “sister” groups were distinguished using TWINSPAN analysis. Prosimulium rufipes is an indicator species within the first group. This group typically occurs in the zone representing a part of the river upstream and its tributaries. Simulium lineatum is an indicator species within the second group that occurs in the zone representing the middle and lower part of the river. The Upstream–Downstream gradient represents, in fact, the ecological position (EP) of the studied localities of the Hron River along the River Continuum Concept. The distribution fitting analysis divides the distribution amplitude data of blackfly species into three sets of nonoverlaping intervals: (1) 0.00–0.19 stenotopic (P. rufipes in the upper course of the river, Simulium erythrocephalum in the lower course of the river), (2) 0.20–0.39 mesotopic (Simulium argyreatum, S. equinum—hyporhithral) and (3) 0.40–0.50 eurytopic (Simulium reptans, S. variegatum). According to CCA the most important variables correlated with the first axis, and were linked to the nitrate and maximal water temperature which gradually increase from the upper stretch of the river. Handling editor: K. Martens  相似文献   
106.
Direct kinematic-kinetic modelling currently represents the “Gold-standard” in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual’s bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P < .001), and multiplanar method by 24.2%BW/LL (P < .001). Leg stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P < .001). The inclusion of medial-lateral components significantly increased leg deformation magnitude, accounting for the reduction in leg stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation.  相似文献   
107.
Heat acclimation over consecutive days has been shown to improve aerobic-based performance. Recently, it has been suggested that heat training can improve performance in a temperate environment. However, due to the multifactorial training demands of athletes, consecutive-day heat training may not be suitable. The current study aimed to investigate the effect of brief (8×30 min) intermittent (every 3–4 days) supplemental heat training on the second lactate threshold point (LT2) in temperate and hot conditions. 21 participants undertook eight intermittent-day mixed-intensity treadmill exercise training sessions in hot (30 °C; 50% relative humidity [RH]) or temperate (18 °C; 30% RH) conditions. A pre- and post-incremental exercise test occurred in temperate (18 °C; 30% RH) and hot conditions (30 °C; 50% RH) to determine the change in LT2. The heat training protocol did not improve LT2 in temperate (Effect Size [ES]±90 confidence interval=0.10±0.16) or hot (ES=0.26±0.26) conditions. The primary finding was that although the intervention group had a change greater than the SWC, no statistically significant improvements were observed following an intermittent eight day supplemental heat training protocol comparable to a control group training only in temperate conditions. This is likely due to the brief length of each heat training session and/or the long duration between each heat exposure.  相似文献   
108.
Voluntary running in an activity wheel endowed rats with aversion to a taste solution consumed before the running. This running-based taste aversion was attenuated by extra running opportunities interspersed among the taste–running pairings, but the attenuating effect was reduced by signaling the extra running by another taste cue. These results correspond to the so-called degraded contingency effect and cover-cue effect in the traditional preparations of Pavlovian conditioning.  相似文献   
109.
Locomotor activity recordings of Syrian hamsters were systematically analyzed to estimate the precision of the overt circadian activity rhythm in constant darkness. Phase variation, i.e., the standard deviation of phase markers around the regression line, varied with the definition of phase. Smallest phase variation was found in the onset of wheel running activity defined by 1h running means of the raw data. Both lower and higher degrees of smoothing lead to decreased precision measured in the overt rhythm. With passive infrared recordings, the midpoint of activity defined by 3h running means was the least variable. This demonstrates that the choice of phase marker should vary between recording methods. Phase variation decreased with increasing activity and was larger in females than in males. By calculating the average cycle variation and serial covariance of consecutive cycles, we estimated the contribution of 'clock' and 'non-clock' related processes to the overt rhythm variability. Variance in precision between phase markers could be shown to be attributable mainly to nonclock processes. Variance in pacemaker cycle length appeared reduced in wheel running activity records compared with passive infrared sensing records, suggesting feedback from running activity onto pacemaker function.  相似文献   
110.
The three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) of HIV-1 was determined by NMR spectroscopy in micelle and bilayer samples. Vpu(2-30+) is a 36-residue polypeptide that consists of residues 2-30 from the N terminus of Vpu and a six-residue "solubility tag" at its C terminus that facilitates the isolation, purification, and sample preparation of this highly hydrophobic minimal channel-forming domain. Nearly all of the resonances in the two-dimensional 1H/15N HSQC spectrum of uniformly 15N labeled Vpu(2-30+) in micelles are superimposable on those from the corresponding residues in the spectrum of full-length Vpu, which indicates that the structure of the trans-membrane domain is not strongly affected by the presence of the cytoplasmic domain at its C terminus. The two-dimensional 1H/15N PISEMA spectrum of Vpu(2-30+) in lipid bilayers aligned between glass plates has been fully resolved and assigned. The "wheel-like" pattern of resonances in the spectrum is characteristic of a slightly tilted membrane-spanning helix. Experiments were also performed on weakly aligned micelle samples to measure residual dipolar couplings and chemical shift anisotropies. The analysis of the PISA wheels and Dipolar Waves obtained from both weakly and completely aligned samples show that Vpu(2-30+) has a trans-membrane alpha-helix spanning residues 8-25 with an average tilt of 13 degrees. The helix is kinked slightly at Ile17, which results in tilts of 12 degrees for residues 8-16 and 15 degrees for residues 17-25. A structural fit to the experimental solid-state NMR data results in a three-dimensional structure with precision equivalent to an RMSD of 0.4 A. Vpu(2-30+) exists mainly as an oligomer on PFO-PAGE and forms ion-channels, a most frequent conductance of 96(+/- 6) pS in lipid bilayers. The structural features of the trans-membrane domain are determinants of the ion-channel activity that may be associated with the protein's role in facilitating the budding of new virus particles from infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号