首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   5篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
51.
采用免疫胶体金标记电镜技术对水稻(0ryza sativa subsp.indica cv.浙农952)叶片中的Rubisco及其活化酶(RCA)进行细胞器定位和定量,同时用免疫扩散法进行叶片含量分析,研究了这两种酶含量及活力的日变化.结果表明Rubisco主要分布于叶绿体,RCA分布于叶绿体和线粒体中;光合速率(Pn)、Rubisco初始活力和RCA活力与光合日变化密切相关;在光照最强的13时,出现光合"午休",叶绿体中Rubisco的密度有一定程度降低,而全叶的总Rubisco保持稳定,Rubisco初始活力也有明显的"午休",这意味着体内Rubisco的活力除受RCA调节外,可能还与叶绿体中Rubisco的分布有关.RCA活力变化与叶绿体中RCA含量变化较为一致,表明RCA在叶绿体中的分布对调节其本身活力和Rubisco活性有重要作用.  相似文献   
52.
Abstract The giant tube worm, Riftia pachyptila , which is abundant at deep-sea hydrothermal vents, contains an extremely high density of bacterial symbionts in a specialized 'trophosome' tissue. Although the symbiont has not been cultured, enzymatic studies by others indicate that the symbiont is capable of hydrogen-sulfide- or sulfur-based lithoautotrophy and fixes CO2 via the Calvin-Benson cycle. Here we report additional findings for a specimen from the Guaymas Basin vent site (Gulf of California, 2000 m). Under assay conditions where activity was proportional to cell-free extract concentration, ribulose bisphosphate carboxylase/oxygenase (RuBisCO) activity was 6.3 nmol CO2/mg protein per min (30°C). This is within the range observed for non-CO2 limited cultures of sulfur bacteria. The activity vs. temperature profile suggests that the symbiont is a mesophile and not a thermophile. A substrate saturation curve shows an apparent K m (with respect to ribulose 1,5-bisphosphate) of 65 μM which is considerably lower than the single previous report for a sulfur bacterial symbiont. Strong hybridization was detected between a gene probe derived from the RuBisCO large subunit gene of Anacystis nidulans and Riftia trophosome DNA. A Rhodospirillum rubrum -derived probe also showed hybridization with the same restriction fragments of symbiont DNA.  相似文献   
53.
54.
To understand the photosynthetic basis in a single seed descent line 10 (SSDL10) of wheat contained high ATP in leaves, the chloroplast proteome was compared to SSDL10 and its parents using a combination of 2-DE and MALDI-TOF MS and MS/MS. More than 300 protein spots could be reproducibly detected in the 2D gel. 18 spots were differentially expressed between SSDL10 and the parents, 16 of which were identified by MS with the localization in chloroplasts. These proteins are grouped into diverse functional categories, including Calvin cycle and electron transport in photosynthesis, redox homeostasis, metabolism, and regulation. In addition to Rubisco large subunit, the content of photosynthetic electron transfers such as chlorophyll a-b binding protein, ATP synthase δ subunit, ferredoxin-NADP+ oxidoreductase (FNR) was higher in SSDL10 than in its parents. Furthermore, cyclic electron transfer around photosystem I (CET) was faster in SSDL10 than in the parents. Analysis of NADPH-NBT oxidoreductase activity combined with immuno-detection further revealed that, the activity of two high molecular mass protein complexes containing FNR probably involved, the CET appeared higher in SSDL10 than in the parents. The possible mechanism for the regulative role of CET in photosynthesis in SSDL10 is discussed.  相似文献   
55.
An elachistacean epiphyte, Neoleptonema yongpilii E.-Y. Lee & I.K. Lee, gen. et sp. nov., is reported from Korean coasts. The plants are distinguished by having unbranched assimilatory filaments with intercalary plurilocular sporangia as well as lateral plurilocular sporangia from the cortex. The new genus differs from the genera Leptonematella P. Silva and Halothrix Reinke by having pod-shaped plurilocular sporangia on the medulla, and from Elachista Duby and Proselachista Y.P. Lee & Garbary by having intercalary plurilocular sporangia and a poorly developed medulla. The phylogenetic relationships of Neoleptonema yongpilii were inferred from the spacer sequences between the genes coding for the large and small subunits of the RuBisCO gene. The new genus is a member of a poorly resolved clade consisting of several genera within the Elachistaceae, within which it is more closely related to Halothrix and Elachista nipponica than to Leptonematella.  相似文献   
56.
Rubisco activase (Rca) facilitates the release of sugar‐phosphate inhibitors from the active sites of Rubisco and thereby plays a central role in initiating and sustaining Rubisco activation. In Arabidopsis, alternative splicing of a single Rca gene results in two Rca isoforms, Rca‐α and Rca‐β. Redox modulation of Rca‐α regulates the function of Rca‐α and Rca‐β acting together to control Rubisco activation. Although Arabidopsis Rca‐α alone less effectively activates Rubisco in vitro, it is not known how CO2 assimilation and plant growth are impacted. Here, we show that two independent transgenic Arabidopsis lines expressing Rca‐α in the absence of Rca‐β (‘Rca‐α only’ lines) grew more slowly in various light conditions, especially under low light or fluctuating light intensity, and in a short day photoperiod compared to wildtype. Photosynthetic induction was slower in the Rca‐α only lines, and they maintained a lower rate of CO2 assimilation during both photoperiod types. Our findings suggest Rca oligomers composed of Rca‐α only are less effective in initiating and sustaining the activation of Rubisco than when Rca‐β is also present. Currently there are no examples of any plant species that naturally express Rca‐α only but numerous examples of species expressing Rca‐β only. That Rca‐α exists in most plant species, including many C3 and C4 food and bioenergy crops, implies its presence is adaptive under some circumstances.  相似文献   
57.
Photosynthesis measurements are traditionally taken under steady‐state conditions; however, leaves in crop fields experience frequent fluctuations in light and take time to respond. This slow response reduces the efficiency of carbon assimilation. Transitions from low to high light require photosynthetic induction, including the activation of Rubisco and the opening of stomata, whereas transitions from high to low light require the relaxation of dissipative energy processes, collectively known as non‐photochemical quenching (NPQ). Previous attempts to assess the impact of these delays on net carbon assimilation have used simplified models of crop canopies, limiting the accuracy of predictions. Here, we use ray tracing to predict the spatial and temporal dynamics of lighting for a rendered mature Glycine max (soybean) canopy to review the relative importance of these delays on net cumulative assimilation over the course of both a sunny and a cloudy summer day. Combined limitations result in a 13% reduction in crop carbon assimilation on both sunny and cloudy days, with induction being more important on cloudy than on sunny days. Genetic variation in NPQ relaxation rates and photosynthetic induction in parental lines of a soybean nested association mapping (NAM) population was assessed. Short‐term NPQ relaxation (<30 min) showed little variation across the NAM lines, but substantial variation was found in the speeds of photosynthetic induction, attributable to Rubisco activation. Over the course of a sunny and an intermittently cloudy day these would translate to substantial differences in total crop carbon assimilation. These findings suggest an unexplored potential for breeding improved photosynthetic potential in our major crops.  相似文献   
58.
Perennial ryegrass (Lolium perenne) is a high quality forage and turf grass mainly due to its excellent nutritive values and rapid establishment rate. However, this species has limited ability to perform in harsh winter climates. Though winter hardiness is a complex trait, it is commonly agreed that frost tolerance (FT) is its main component. Species growing in temperate regions can acquire FT through exposure to low, non-lethal temperatures, a phenomenon known as cold acclimation (CA). The research on molecular basis of FT has been performed on the model plants, but they are not well adapted to extreme winter climates. Thus, the mechanisms of cell response to low temperature in winter crops and agronomically important perennial grasses have yet to be revealed. Here, two L. perenne plants with contrasting levels of FT, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on analyses of leaf protein accumulation before and after 2, 8, 26 h, and 3, 5, 7, 14 and 21 days of CA, using a high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry (MS). Analyses of 580 protein profiles revealed a total of 42 (7.2%) spots that showed at a minimum of 1.5-fold differences in protein abundance, at a minimum of at one time point of CA between HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analyzed plants appeared most often on the 5th (18 proteins) and the 7th (19 proteins) day of CA. The proteins derived from 35 (83.3%) spots were successfully identified by the use of MS and chloroplast proteins were shown to be the major group selected as differentially accumulated during CA. The functions of the identified proteins and their probable influence on the level of FT in L. perenne are discussed.  相似文献   
59.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   
60.
The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ?-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin–Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号