首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6078篇
  免费   546篇
  国内免费   334篇
  2024年   12篇
  2023年   199篇
  2022年   274篇
  2021年   328篇
  2020年   300篇
  2019年   355篇
  2018年   336篇
  2017年   279篇
  2016年   223篇
  2015年   239篇
  2014年   360篇
  2013年   393篇
  2012年   253篇
  2011年   354篇
  2010年   241篇
  2009年   259篇
  2008年   287篇
  2007年   269篇
  2006年   244篇
  2005年   223篇
  2004年   199篇
  2003年   185篇
  2002年   137篇
  2001年   78篇
  2000年   90篇
  1999年   69篇
  1998年   53篇
  1997年   52篇
  1996年   35篇
  1995年   34篇
  1994年   35篇
  1993年   27篇
  1992年   18篇
  1991年   19篇
  1989年   13篇
  1988年   11篇
  1987年   23篇
  1986年   17篇
  1985年   35篇
  1984年   52篇
  1983年   46篇
  1982年   44篇
  1981年   44篇
  1980年   32篇
  1979年   36篇
  1978年   43篇
  1977年   27篇
  1976年   14篇
  1975年   17篇
  1974年   20篇
排序方式: 共有6958条查询结果,搜索用时 15 毫秒
181.
《Fly》2013,7(1):52-57
The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.  相似文献   
182.
《Autophagy》2013,9(11):1682-1683
Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal membranes, the molecular mechanism underlying these membrane trafficking steps remains elusive. To address this question we performed a systematic analysis testing all known Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins for their ability to inhibit autophagosome formation by disrupting a specific membrane trafficking step. TBC proteins are thought to act as inhibitors of Rab GTPases, which regulate membrane trafficking events. Up to 11 TBC proteins inhibit autophagy when overexpressed and one of these, TBC1D14, acts at an early stage during autophagosome formation and is involved in regulating recycling endosomal traffic. We found that the early acting autophagy proteins ATG9 and ULK1 localize to transferrin receptor (TFR)-positive recycling endosomes (RE), which are tubulated by excess TBC1D14 leading to an inhibition of autophagosome formation. Finally, transferrin (TF)-containing recycling endosomal membranes can be incorporated into newly forming autophagosomes, although it is likely that most of the autophagosome membrane is subsequently acquired from other sources.  相似文献   
183.
《Autophagy》2013,9(8):1197-1214
Autophagy is activated in response to a variety of cellular stresses including metabolic stress. While elegant genetic studies in yeast have identified the core autophagy machinery, the signaling pathways that regulate this process are less understood. AMPK is an energy sensing kinase and several studies have suggested that AMPK is required for autophagy. The biochemical connections between AMPK and autophagy, however, have not been elucidated. In this report, we identify a biochemical connection between a critical regulator of autophagy, ULK1, and the energy sensing kinase, AMPK. ULK1 forms a complex with AMPK, and AMPK activation results in ULK1 phosphorylation. Moreover, we demonstrate that the immediate effect of AMPK-dependent phosphorylation of ULK1 results in enhanced binding of the adaptor protein YWHAZ/14-3-3ζ; and this binding alters ULK1 phosphorylation in vitro. Finally, we provide evidence that both AMPK and ULK1 regulate localization of a critical component of the phagophore, ATG9, and that some of the AMPK phosphorylation sites on ULK1 are important for regulating ATG9 localization. Taken together these data identify an ULK1-AMPK signaling cassette involved in regulation of the autophagy machinery.  相似文献   
184.
The secretopeptidome comprises endogenous peptides derived from proteins secreted into the tumour microenvironment through classical and non-classical secretion. This study characterised the low-Mr (< 3 kDa) component of the human colon tumour (LIM1215, LIM1863) secretopeptidome, as a first step towards gaining insights into extracellular proteolytic cleavage events in the tumour microenvironment. Based on two biological replicates, this secretopeptidome isolation strategy utilised differential centrifugal ultrafiltration in combination with analytical RP-HPLC and nanoLC-MS/MS. Secreted peptides were identified using a combination of Mascot and post-processing analyses including MSPro re-scoring, extended feature sets and Percolator, resulting in 474 protein identifications from 1228 peptides (≤ 1% q-value, ≤ 5% PEP) — a 36% increase in peptide identifications when compared with conventional Mascot (homology ionscore thresholding). In both colon tumour models, 122 identified peptides were derived from 41 cell surface protein ectodomains, 23 peptides (12 proteins) from regulated intramembrane proteolysis (RIP), and 12 peptides (9 proteins) generated from intracellular domain proteolysis. Further analyses using the protease/substrate database MEROPS, (http://merops.sanger.ac.uk/), revealed 335 (71%) proteins classified as originating from classical/non-classical secretion, or the cell membrane. Of these, peptides were identified from 42 substrates in MEROPS with defined protease cleavage sites, while peptides generated from a further 205 substrates were fragmented by hitherto unknown proteases. A salient finding was the identification of peptides from 88 classical/non-classical secreted substrates in MEROPS, implicated in tumour progression and angiogenesis (FGFBP1, PLXDC2), cell–cell recognition and signalling (DDR1, GPA33), and tumour invasiveness and metastasis (MACC1, SMAGP); the nature of the proteases responsible for these proteolytic events is unknown. To confirm reproducibility of peptide fragment abundance in this study, we report the identification of a specific cleaved peptide fragment in the secretopeptidome from the colon-specific GPA33 antigen in 4/14 human CRC models. This improved secretopeptidome isolation and characterisation strategy has extended our understanding of endogenous peptides generated through proteolysis of classical/non-classical secreted proteins, extracellular proteolytic processing of cell surface membrane proteins, and peptides generated through RIP. The novel peptide cleavage site information in this study provides a useful first step in detailing proteolytic cleavage associated with tumourigenesis and the extracellular environment. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
185.
The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation “P0-receptors” has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [3H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure–activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.  相似文献   
186.
In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and CCN2 (connective tissue growth factor; CTGF) cause blindness by neovascularization and subsequent fibrosis. This angio-fibrotic switch is associated with a shift in the balance between vitreous levels of CCN2 and VEGF in the eye. Here, we investigated the possible involvement of other important mediators of fibrosis, tissue inhibitor of metalloproteinases (TIMP)-1 and transforming growth factor (TGF)-β2, and of the matrix metalloproteinases (MMP)-2 and MMP-9, in the natural course of PDR. TIMP-1, activated TGF-β2, CCN2 and VEGF levels were measured by ELISA in 78 vitreous samples of patients with PDR (n = 28), diabetic patients without PDR (n = 24), and patients with the diabetes-unrelated retinal conditions macular hole (n = 10) or macular pucker (n = 16), and were related to MMP-2 and MMP-9 activity on zymograms and to clinical data, including degree of intra-ocular neovascularization and fibrosis. TIMP-1, CCN2 and VEGF levels, but not activated TGF-β2 levels, were significantly increased in the vitreous of diabetic patients, with the highest levels in PDR patients. CCN2 and the CCN2/VEGF ratio were the strongest predictors of degree of fibrosis. In diabetic patients with or without PDR, activated TGF-β2 levels correlated with TIMP-1 levels, whereas in PDR patients, TIMP-1 levels, MMP-2 and proMMP-9 were associated with degree of neovascularization, like VEGF levels, but not with fibrosis. We confirm here our previous findings that retinal fibrosis in PDR patients is significantly correlated with vitreous CCN2 levels and the CCN2/VEGF ratio. In contrast, TIMP-1, MMP-2 and MMP-9 appear to have a role in the angiogenic phase rather than in the fibrotic phase of PDR.  相似文献   
187.
In contrast to animal cells, the inositol 1,4,5-trisphosphate receptor of Trypanosoma cruzi (TcIP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. Here, we present evidence that TcIP3R is a Ca2+ release channel gated by IP3 when expressed in DT40 cells knockout for all vertebrate IP3 receptors, and is required for Ca2+ uptake by T. cruzi mitochondria, regulating pyruvate dehydrogenase dephosphorylation and mitochondrial O2 consumption, and preventing autophagy. Localization studies revealed its co-localization with an acidocalcisome marker in all life cycle stages of the parasite. Ablation of TcIP3R by CRISPR/Cas9 genome editing caused: a) a reduction in O2 consumption rate and citrate synthase activity; b) decreased mitochondrial Ca2+ transport without affecting the membrane potential; c) increased ammonia production and AMP/ATP ratio; d) stimulation of autophagosome formation, and e) marked defects in growth of culture forms (epimastigotes) and invasion of host cells by infective stages (trypomastigotes). Moreover, TcIP3R overexpressing parasites showed decreased metacyclogenesis, trypomastigote host cell invasion and intracellular amastigote replication. In conclusion, the results suggest a modulatory activity of TcIP3R-mediated acidocalcisome Ca2+ release on cell bioenergetics in T. cruzi.  相似文献   
188.
Ischemic heart disease (IHD) is a common cardiovascular disease, occurs when coronary artery blood circularity cannot match with the heart's need. The present work attempted to study the effects of long noncoding RNA (lncRNA) low expression in tumor (LET) on the progression of IHD. H9c2 cells were injured by hypoxia to mimic a cell model of IHD. The effects of lncRNA-LET on hypoxia-injured H9c2 cells were tested by using cell counting kit-8 assay, flow cytometry, and Western blot analysis. MicroRNA-138 (miR-138) expression was tested by a quantitative real-time polymerase chain reaction, and the expression of c-Jun N-terminal kinase (JNK) and p38MAPK (p38–mitogen-activated protein kinase) proteins was measured by Western blot analysis. We found that hypoxia exposure significantly repressed the viability of H9c2 cells, and induced apoptosis. Meanwhile, phosphorylation of JNK and p38MAPK was enhanced by hypoxia. The expression of lncRNA-LET was repressed by hypoxia. Overexpression of lncRNA-LET attenuated hypoxia-induced injury in H9c2 cells. Moreover, miR-138 was a downstream effector of lncRNA-LET, that miR-138 was highly expressed in lncRNA-LET-overexpressed cell. The cardioprotective effects of lncRNA-LET were abolished when miR-138 was silenced. In conclusion, this study revealed the cardioprotective function of lncRNA-LET. lncRNA-LET conferred its cardioprotective effects possibly via upregulation of miR-138 and thus repressing the JNK and p38MAPK pathways.  相似文献   
189.
The replicon system, which mimics viral genome replication in culture cells, has been widely used to analyze the genome replication of the hepatitis C virus (HCV). However, most HCV genomes used in the system include adaptive mutations (AMs) that are vital for replication in culture cells despite the nonexistence of such mutations in the genome of wild-type (WT) HCV in patients. In order to study the genome replications of WT HCV, new HCV subgenomic replicon (SGR) systems were established using Huh-7.5-derived cells producing Sec14-like protein 2 constitutively and SGR of KT9 (one of the HCV genotype 1b clones) with WT genome (SGR KT9WT) in this study. The replication efficiency and sensitivities of SGR KT9WT to anti-HCV drugs in the cloned cells permanently bearing replicon RNA, HS55-4 cells, were similar to those of reports using SGR, including AM. The SGR transient transfection system using SGR KT9WT and SGR KT9AM encoding secreted Nano-luciferase and HS55-4C cells established by the elimination of SGR KT9 RNA from HS55-4 cells, however, showed that the replication efficiency of SGR KT9WT was much lower than that of SGR KT9AM under a same condition. Furthermore, the sensitivities of SGR KT9WT to almost all tested anti-HCV reagents, except the inhibitor of miR-122, a cellular factor important for HCV replication, were quite low compared with SGR KT9AM. These results suggested that the new replicon systems might not only provide information about precise responses against new anti-HCV drugs but also reveal novel molecular mechanisms supporting negligent proliferation of HCV.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号