首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5033篇
  免费   521篇
  国内免费   308篇
  2024年   7篇
  2023年   120篇
  2022年   93篇
  2021年   137篇
  2020年   194篇
  2019年   285篇
  2018年   235篇
  2017年   206篇
  2016年   180篇
  2015年   173篇
  2014年   301篇
  2013年   394篇
  2012年   169篇
  2011年   247篇
  2010年   210篇
  2009年   222篇
  2008年   282篇
  2007年   258篇
  2006年   279篇
  2005年   237篇
  2004年   224篇
  2003年   207篇
  2002年   175篇
  2001年   112篇
  2000年   95篇
  1999年   87篇
  1998年   96篇
  1997年   75篇
  1996年   68篇
  1995年   60篇
  1994年   60篇
  1993年   44篇
  1992年   49篇
  1991年   28篇
  1990年   18篇
  1989年   21篇
  1988年   19篇
  1987年   24篇
  1986年   22篇
  1985年   21篇
  1984年   11篇
  1983年   11篇
  1982年   20篇
  1981年   7篇
  1980年   17篇
  1979年   8篇
  1978年   12篇
  1977年   10篇
  1976年   7篇
  1975年   8篇
排序方式: 共有5862条查询结果,搜索用时 265 毫秒
101.
Abstract

Response surface methodology (RSM) was employed to enhance the production of a thermostable alkaline protease from Bacillus circulans. Significant influences of peptone, yeast extract, and glucose on protease production were noted with a one-variable-at-a-time optimization strategy. Then, a full factorial central composite design (CCD) was applied to study the effects of glucose, peptone, and yeast extract to determine the optimal concentrations of these compounds for protease production by B. circulans under shake flask fermentation conditions. The statistical reliability and significance of the model was validated by an F-test for analysis of variance (ANOVA); enzyme production was improved significantly under optimized conditions. The enzyme was purified by ammonium sulphate fractionation, and gel filtration chromatography. Maximum enzyme activity was observed at 60°C temperature, and at pH 10. Alkaline protease from B. circulans showed excellent compatibility and stability in the presence of commercial detergents like Ariel, Surf Excel, Tide, Rin, Nirma, Wheel, and Doctor and showed excellent blood destaining effectiveness with commercial detergents.  相似文献   
102.
The effects of environmental conditions, including temperature, pH and dissolved oxygen, on growth and production of polyvinyl alcohol (PVA)-degrading enzymes of the newly-isolated strain Streptomyces venezuelae GY1 were investigated. The medium composition for strain GY1 was studied first by single factorial design and then optimized using a central composite design. PVA with high saponification is better for growth of, and PVA-degrading enzyme production by S. venezuelae GY1 compared with PVA with low saponification, in contrast with the characteristics of other bacteria producing PVA-degrading enzymes. The optimal temperature and initial pH for production of PVA-degrading enzyme by strain GY1 was 30°C and 7.0, respectively. The optimal medium composition for PVA-degrading enzyme production is: 1.01 g L?1 of PVA1799, 0.307 g L?1 of NaNO3 and 0.512 g L?1 of MgSO4?7H2O.  相似文献   
103.
One of the crucial factors for short- and long-term clinical success of total hip arthroplasty cementless implants is primary stability. Indeed, motion at the bone–implant interface above 40 μm leads to partial bone ingrowth, while motion exceeding 150 μm completely inhibits bone ingrowth. The aim of this study was to investigate the effect of two cementless femoral stem designs with different lengths on the primary stability. A finite element model of a composite Sawbones® fourth generation, implanted with five lengths of the straight prosthesis design and four lengths of the curved prosthesis design, was loaded with hip joint and abductor forces representing two physiological activities: fast walking and stair climbing. We found that reducing the straight stem length from 146 to 54 mm increased the average micromotion from 17 to 52 μm during fast walking, while the peak value increased from 42 to 104 μm. With the curved stem, reducing length from 105 to 54 mm increased the average micromotion from 10 to 29 μm, while the peak value increased from 37 to 101 μm. Similar findings are obtained for stair climbing for both stems. Although the present study showed that femoral stem length as well as stem design directly influences its primary stability, for the two femoral stems tested, length could be reduced substantially without compromising the primary stability. With the aim of minimising surgical invasiveness, newer femoral stem design and currently well performing stems might be used with a reduced length without compromising primary stability and hence, long-term survivorship.  相似文献   
104.
A three-dimensional finite-element model was developed to simulate the complex movement of the laryngeal cartilages during vocal fold abduction and adduction. The model consists of cricoid and arytenoid cartilages, as well as the intralaryngeal muscles and vocal folds. The active and passive properties of the muscles were idealised by one-dimensional elements based on the Hill theory. Its controlling input value is a time dependent stimulation rate. Optimisation loops have been carried out for the arrangement of the individual stimulation rates. Since in vivo measurements are not feasible, the developed biomechanical model shall be used to analyse the force distribution within the laryngeal muscles during phonatory manoeuvres. Simulations of abduction and adduction in different pitches of voice lead to realistic tensions of the vocal folds. The model is a first step to analyse motional vocal fold diseases and to predict the consequences of phonosurgical interventions.  相似文献   
105.
Abstract

This paper presents the process of designing a new elastic element replacing a membrane in the chamber stapes prosthesis (ChSP). The results of the study are volume displacement characteristics obtained for the prosthesis and physiological stapes. Simulation tests on a 3D CAD model have confirmed that a properly designed ring can stimulate perilymph with the same or greater efficacy as the physiological stapes footplate placed on the elastic annular ligament. The ChSP with a new elastic element creates a good chance of improving hearing in patients suffering from otosclerosis.  相似文献   
106.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   
107.
This article reports on the geometric optimisation of a T-shaped biochip microchannel fluidic separator aiming to maximise the separation efficiency of plasma from blood through the improvement of the unbalanced separation performance among different channel bifurcations. For this purpose, an algebraic analysis is firstly implemented to identify the key parameters affecting fluid separation. A numerical optimisation is then carried out to search the key parameters for improved separation performance of the biochip. Three parameters, the interval length between bifurcations, the main channel length from the outlet to the bifurcation region and the side channel geometry, are identified as the key characteristic sizes and defined as optimisation variables. A balanced flow rate ratio between the main and side channels, which is an indication of separation effectiveness, is defined as the objective. It is found that the degradation of the separation performance is caused by the unbalanced channel resistance ratio between the main and side channel routes from bifurcations to outlets. The effects of the three key parameters can be summarised as follows: (a) shortening the interval length between bifurcations moderately reduces the differences in the flow rate ratios; (b) extending the length of the main channel from the main outlet is effective for achieving a uniformity of flow rate ratio but ineffective in changing the velocity difference of the side channels and (c) decreasing the lengths of side channels from upstream to downstream is effective for both obtaining a uniform flow rate ratio and reducing the differences in the flow velocities between the side branch channels. An optimisation process combining the three parameters is suggested as this integration approach leads to fast convergent process and also offers flexible design options for satisfying different requirements.  相似文献   
108.
Abstract

When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the skin strain field, and therefore, in the design and manufacturing of rehabilitation products, such as orthoses. Several studies have analysed the skin deformation during human motion, nevertheless, the comparison between the skin strain field in different subjects during normal or pathological gait has not been reported yet. This work presents a comparison of skin strain analysis for different gait patterns to study the differences between people and, specifically, if it is possible to standardize the orthotic design between subjects with the same gait disorder. Moreover, the areas with relatively minimum strain during the ankle-foot motion are compared to improve the design of structural parts of rehabilitation devices. In this case, a validated 3D digital image correlation system has been used for this purpose combined with strain ellipse theory. The results demonstrate variations in the skin strain field between subjects with the same pathology and similarities between subjects with normal gait. However, more studies and experiments are necessaries to validate this hypothesis and also to test it between different gait pathologies.  相似文献   
109.
The maintenance of genomic stability relies on the coordinated action of a number of cellular processes, including activation of the DNA-damage checkpoint, DNA replication, DNA repair, and telomere homeostasis. Many proteins involved in these cellular processes use different types of functional modules to regulate and execute their functions. Recent studies have revealed that many DNA-damage checkpoint and DNA repair proteins in human cells possess the oligonucleotide/oligosaccharide-binding (OB) fold domains, which are known to bind single-stranded DNA in both prokaryotes and eukaryotes. Furthermore, during the DNA damage response, the OB folds of the human checkpoint and DNA repair proteins play critical roles in DNA binding, protein complex assembly, and regulating protein–protein interactions. These findings suggest that the OB fold is an evolutionarily conserved functional module that is widely used by genome guardians. In this review, we will highlight the functions of several well-characterized or newly discovered eukaryotic OB-fold proteins in the DNA damage response.  相似文献   
110.
Cyclotides are plant‐derived peptides of approximately 30 amino acids that have the characteristic structural features of a head‐to‐tail cyclized backbone and a cystine knot arrangement of their three conserved disulfide bonds. This article gives a personal account of the discovery of cyclotides, their characterization and their applications, based on work carried out in my laboratory over the last 20 years. It describes some of the background to their discovery and focuses on how their unique structural features lead to exceptional stability. This stability and their amenability to chemical synthesis have made it possible to use cyclotides as templates in protein engineering and drug design applications. These applications complement the interest in cyclotides deriving from their unique structures and natural function as host defense molecules. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号