首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5492篇
  免费   371篇
  国内免费   295篇
  2023年   86篇
  2022年   84篇
  2021年   151篇
  2020年   150篇
  2019年   152篇
  2018年   146篇
  2017年   160篇
  2016年   143篇
  2015年   158篇
  2014年   211篇
  2013年   330篇
  2012年   144篇
  2011年   186篇
  2010年   164篇
  2009年   304篇
  2008年   305篇
  2007年   306篇
  2006年   279篇
  2005年   230篇
  2004年   211篇
  2003年   155篇
  2002年   162篇
  2001年   134篇
  2000年   140篇
  1999年   122篇
  1998年   126篇
  1997年   108篇
  1996年   106篇
  1995年   89篇
  1994年   92篇
  1993年   84篇
  1992年   85篇
  1991年   79篇
  1990年   60篇
  1989年   70篇
  1988年   49篇
  1987年   63篇
  1986年   62篇
  1985年   90篇
  1984年   73篇
  1983年   41篇
  1982年   53篇
  1981年   77篇
  1980年   38篇
  1979年   48篇
  1978年   19篇
  1977年   11篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
排序方式: 共有6158条查询结果,搜索用时 15 毫秒
191.
Summary Organic components leaked fromSorghum bicolor seedlings (‘root exudates’) were examined by recovering14C labelled compounds from root solutions of seedlings inoculated withAzospirillum brasilense, Azotobacter vinelandii orKlebsiella pneumoniae nif-. Up to 3.5% of the total14C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and Azotobacter increased the amounts of14C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria, the increase of14C in the solutions did not occur. Quantities of14C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with14CO2, about 15% of the total14C recovered within 48 hours exposure was found in soil leachates.  相似文献   
192.
Summary The content of endogenous gibberellin (GA)-like substances of roots and root nodules of SOya, and GA production byRhizobium japonicum cultures, were investigated by a combined thin layer chromatographic (TLC)-dwarf pea epicotyl bioassay technique. GAs were more concentrated in root nodules than in the roots, totalling 1.34 and 0.16 nM GA3 equivalents g−1 dry wt. respectively. GA production byR. japonicum cultures was demonstrated (1.00 nM GA3 equivalentsl −1) and comparison of the GA components of plant and bacterial culture medium extracts, suggested that rhizobial GA production may contribute to the nodule GA content. Cis-trans abscisic acid (ABA) was identified in root and nodule extracts by TLC-gas liquid chromatography (GLC), and amounted to 0.18 and 2.21 nM g−1 dry wt. respectively, whereas 0.30 and 4.63 nM ABA equivalents g−1 dry wt. were detected by a TLC-wheat embryo bioassay technique. ABA was not detected in extracts of bacterial cultures.  相似文献   
193.
Summary A simple method for making detailed measurements of seedling root systems is described. Photocopies of root systems are traced over by an operator using a digitizing system attached to a microcomputer. The computer calculates and prints the lengths of axis, laterals and sublaterals for each root system. Accurate measurements can be achieved with a degree of speed and detail unobtainable by other methods.  相似文献   
194.
The number of roots formed in cuttings of pea ( Pisum sativum L. cv. Alaska) was regulated both by the temperature and by IAA, whereas the time to the appearance of the first roots was regulated only by the temperature. Cuttings treated with 10-3 M IAA had a smaller content of extractable carbohydrates than the control ones irrespective of the temperature. In the bases of cuttings rooted at 25°C the content of extractable carbohydrates was lower than in those rooted at 15°C. Cuttings treated with IAA showed up to elevenfold increase of extractable carbohydrates in the bases at day 3. This increase of soluble sugars was not correlated with the number of roots formed or the speed of rooting. It is concluded that IAA affects the accumulation of carbohydrates, and this is not connected with the rooting ability of the cuttings.  相似文献   
195.
Summary The air content in three types of propagation media, Jiffy-7 and Jiffy-9 which are Sphagnum peat and Grodan which is rockwool, were investigated when they were held at moisture tensions of 0,6 and 12 cm measured from the base of the media. At 0 cm tension the air content (vol. %) was highest in Jiffy-9 and lowest in Jiffy-7. At 12 cm tension the air content was higher in Grodan than in Jiffy-9 and Jiffy-7. Oxygen diffusion coefficients (ODC) and oxygen diffusion rates (ODR) were measured at the different air contents. At air contents below 20 vol. % ODC was about the same for Jiffy-9 and Grodan but at air contents above 20 vol.% it was larger for Jiffy-9 than for Grodan. The oxygen diffusion rate was measured at 0, 4 and 8 cm moisture tension. At all tensions it was approximately 20% higher in Jiffy-9 than in Grodan and Jiffy-7. The ODR in Jiffy-7 and Grodan were affected equally at the same tension, although Grodan contained more air. Report no 253  相似文献   
196.
W. Pfaff  P. Schopfer 《Planta》1980,150(4):321-329
The question of whether or not hormones are causal links in the realization of phytochrome control during photomorphogenesis was investigated using the phytochrome-dependent formation of adventitious roots in hypocotyl cuttings excised from mustard seedlings as a test system. Histological examination of regenerating rest seedlings revealed that phytochrome (operationally, continuous far-red light) mediates the de novo formation of root primordia in the pericycle region of the hypocotyl near the cutting surface withing 12–24 h after excision.Auxin (IAA), gibberellin (GA3), Cytokinin (kinetin), abscisic acid (ABA), and ethylene had no promotive effect on primordium formation in dark-grown or far-red irradiated rest seedlings. Depending on concentration, the application of these hormones was either ineffective or inhibitory in the rooting response. It is concluded that phytochrome does not operate through changes of hormone (auxin, gibberellin, cytokinin, ABA, ethylene) levels.While externally applied ethylene had no specific effect on primordium formation, the number of primordia produced in darkness could be increased to the far-red light level by removing the endogenously formed ethylene. Since the stimulatory effect of light could not be related to a lower ethylene level, it is concluded that ethylene interferes with primordium formation by modulating the susceptibility of this process to phytochrome control. This ethylene effect takes place in a concentration range below the range that can be manipulated by external application of the hormone.Abbreviations ABA abscisic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - Pr Pfr red and far-red absorbing forms of phytochrome  相似文献   
197.
At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.  相似文献   
198.
The electrochemical potential differences for potassium, between excised barley (Hordeum vulgare L.) roots and external media containing 0.05 mM KCl+0.5 mM CaSO4, were determined over a 4-h period during which initially low-K+ roots accumulated K+ by pretreatment in 50 mM KCl plus 0.5 mM CaCl2. This pretreatment resulted in increased internal [K+], decreased K+ influx (as measured from 0.05 mM KCl+0.5 mM CaSO4) and decreased values of . These observations indicate that the decline of K+ influx associated with increased internal K+ concentration cannot be accounted for by passive adjustment to the electrochemical gradient for this ion.  相似文献   
199.
Growth regulators were measured in extracts from the upper and lower halves of 7-mm apical segments of horizontally oriented, red-light-irradiated and non-irradiated roots of Zea mays L. cv. Golden Cross Bantam 70 which exhibit a georesponse only after an exposure to light. Abscisic acid (ABA) was measured by gas-liquid chromatography, auxin (indole-3-acetic acid, IAA) by the Avena straight-growth assay, and an unidentified growth inhibitor by a Zea root-growth assay. The ratio of ABA in the upper and lower halves was 1.6 in the irradiated roots and 1.0 in the non-irradiated ones. The total amount of ABA after irradiation was increased by a factor of ca. 1.8. The ratio of IAA in the upper and lower halves of irradiated and non-irradiated roots was 1:3.4 and 1:2.9, respectively. The content (or activity) of an unidentified growth inhibitor was highest in the lower halves of horizontally oriented roots which had been irradiated with red light. The unidentified growth inhibitor, rather than IAA or ABA, may be the major factor in the light-induced geotropic responsiveness in Zea roots.  相似文献   
200.
I. Stulen  G. F. Israelstam  A. Oaks 《Planta》1979,146(2):237-241
An asparagine synthetase which is active with either glutamine or NH 4 + has been found in maize (Zea mays L.) roots. Unlike the enzyme obtained from legume cotyledons, the maize-root enzyme is only slightly more efficient with glutamine (Km, 1.0 mM) than with NH 4 + (Km, 2.0–3.0 mM). The activity of this enzyme is higher in the mature root than in the root-tip region, i.e. root cells develop a capacity to make asparagine from glutamine or NH 4 + as they mature. -Cyanoalanine synthetase is also present in maize roots. The apparent Km for cysteine is 2.6 mM and for cyanide is 0.57 mM. The enzyme is more active in the root tip than in mature root tissue. Thus, if asparagine were made in the root tip, the cyanide pathway could represent the mechanism of synthesis. It is our contention, however, that this potential is not realized under normal conditions because 14C-experiments performed previously have indicated a limited availability of both CN and cysteine in the maize root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号