首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1903篇
  免费   85篇
  国内免费   138篇
  2126篇
  2023年   7篇
  2022年   18篇
  2021年   31篇
  2020年   21篇
  2019年   21篇
  2018年   27篇
  2017年   17篇
  2016年   17篇
  2015年   24篇
  2014年   34篇
  2013年   63篇
  2012年   32篇
  2011年   46篇
  2010年   26篇
  2009年   104篇
  2008年   110篇
  2007年   105篇
  2006年   110篇
  2005年   72篇
  2004年   76篇
  2003年   55篇
  2002年   59篇
  2001年   49篇
  2000年   70篇
  1999年   52篇
  1998年   66篇
  1997年   61篇
  1996年   42篇
  1995年   39篇
  1994年   36篇
  1993年   42篇
  1992年   36篇
  1991年   42篇
  1990年   26篇
  1989年   46篇
  1988年   33篇
  1987年   40篇
  1986年   51篇
  1985年   65篇
  1984年   48篇
  1983年   28篇
  1982年   33篇
  1981年   56篇
  1980年   27篇
  1979年   39篇
  1978年   13篇
  1977年   6篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有2126条查询结果,搜索用时 15 毫秒
81.
The Rooting of the Universal Tree of Life Is Not Reliable   总被引:19,自引:0,他引:19  
Several composite universal trees connected by an ancestral gene duplication have been used to root the universal tree of life. In all cases, this root turned out to be in the eubacterial branch. However, the validity of results obtained from comparative sequence analysis has recently been questioned, in particular, in the case of ancient phylogenies. For example, it has been shown that several eukaryotic groups are misplaced in ribosomal RNA or elongation factor trees because of unequal rates of evolution and mutational saturation. Furthermore, the addition of new sequences to data sets has often turned apparently reasonable phylogenies into confused ones. We have thus revisited all composite protein trees that have been used to root the universal tree of life up to now (elongation factors, ATPases, tRNA synthetases, carbamoyl phosphate synthetases, signal recognition particle proteins) with updated data sets. In general, the two prokaryotic domains were not monophyletic with several aberrant groupings at different levels of the tree. Furthermore, the respective phylogenies contradicted each others, so that various ad hoc scenarios (paralogy or lateral gene transfer) must be proposed in order to obtain the traditional Archaebacteria–Eukaryota sisterhood. More importantly, all of the markers are heavily saturated with respect to amino acid substitutions. As phylogenies inferred from saturated data sets are extremely sensitive to differences in evolutionary rates, present phylogenies used to root the universal tree of life could be biased by the phenomenon of long branch attraction. Since the eubacterial branch was always the longest one, the eubacterial rooting could be explained by an attraction between this branch and the long branch of the outgroup. Finally, we suggested that an eukaryotic rooting could be a more fruitful working hypothesis, as it provides, for example, a simple explanation to the high genetic similarity of Archaebacteria and Eubacteria inferred from complete genome analysis.  相似文献   
82.
Root temperature is found to be a very important factor forleaves to alter the response and susceptibility to chillingstress. Severe visible damage was observed in the most activeleaves of seedlings of a japonica rice (Oryza sativa cv. Akitakomachi),e.g. the third leaf at the third-leaf stage, after the treatmentwhere only leaves but not roots were chilled (L/H). On the otherhand, no visible damage was observed after the treatment whereboth leaves and roots were chilled simultaneously (L/L). Thechilling injury induced by L/H, a novel type of chilling injury,required the light either during or after the chilling in orderto develop the visible symptoms such as leaf bleaching and tissuenecrosis. Chlorophyll fluorescence parameters measured aftervarious lengths of chilling treatments showed that significantchanges were induced before the visible injury. The effectivequantum yield and photochemical quenching of PSII dropped dramaticallywithin 24 h in both the presence and absence of a 12 h lightperiod. The maximal quantum yield and non-photochemical quenchingof PSII decreased significantly only in the presence of light.On the other hand, L/H chilling did not affect the functionof PSI, but caused a significant decrease in the electron availabilityfor PSI. These results suggest that the leaf chilling with highroot temperature destroys some component between PSII and PSIwithout the aid of light, which causes the over-reduction ofPSII in the light, and thereby the visible injury is inducedonly in the light.  相似文献   
83.
H. Maaß  D. Klämbt 《Planta》1981,151(4):353-358
Roots of intact bean plants were supplied with [14C]adenine by pulse-chase experiments. The rate of incorporation of radioactivity into tRNA and oligonucleotides of roots as well as the content of radioactive labeled cytokinin nucleotides in these RNA fractions were determined. On the average, 1/70 of the radioactivity incorporated into tRNA was localized in N6(2isopentenyl)adenosine. The half life of tRNA was estimated to be 65–70 h. Shortly after the pulse period, oligonucleotides contained zeatin riboside at a ratio of 1:800, on the basis of radioactivity. The half life of these oligonucleotides was determined to be about 8 h. The main free radioactive cytokinin of roots and leaves was zeatin. Comparing the rate of degradation of 14C-labeled tRNA and the oligonucleotides of roots and the rate of appearance of radioactive cytokinins in roots and leaves, we found strong indications for their dependency. The results contradict the hypothesis of de novo synthesis of cytokinins in roots of intact bean plants.Abbreviations AMP adenosine monophosphate - IPA N6(2isopentenyl)adenosine - IPAde N6(2isopentenyl)adenosine - Z zeatin - ZR zeatinriboside - TLC thin-layer chromatography - HPLC high performance liquid chromatography Part of the doctoral thesis, Bonn 1980  相似文献   
84.
熊忠  杜继曾 《兽类学报》1997,17(3):234-235
根田鼠肾上腺皮质酮水平的日节律及急性低氧的影响THECIRCADIANRHYTHMOFCORTICOSTERONELEVELANDEFFECTOFHYPOXIAONROOTVOLE(MICROTUSOECONOMUS)根田鼠(Microtusoec...  相似文献   
85.
Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein–1.h–1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein–1 .h–1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.  相似文献   
86.
To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.Published as Florida Agricultural Experimental Station Journal Series No. R-02576  相似文献   
87.
This study represents an efficient preliminary protocol for in vitro mass production of two Paulownia species (Paulownia hybrid and Paulownia tomentosa) seedlings by using seed explant. Different concentrations of benzyladenine (BA) or Kinetin (Kin) (0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mg/L) were tested during multiplication stage. The number of shoots/explants was significantly increased with increasing either BA or Kin concentration; however, the shoot length significantly decreased. Data show that media fortified by BA (10 mg/L) combined with indole butyric acid (IBA) at 1.0 or 1.5 mg/L recorded the highest number of shoots/explant (9.13 and 9.25, respectively). After six weeks during the multiplication stage, data cleared that media fortified by benzyladenine (10 mg/L) combined with IBA at 0.5 mg/L recorded the highest shoot length (3.23 cm). The inclusion of indole butyric acid (IBA) or naphthalene acetic acid (NAA) at 1.0–1.5 mg/L to the medium significantly increased the number of roots/plantlets and the highest root length. The results indicated that IBA supplementation was more effective than NAA for in vitro rooting of both Paulownia species. The best treatment for multiplication was 10 mg/L and 8.0–10 mg/L BA for P. hybrid and P. tomentosa, respectively. Peat moss and sand (1:1, v/v) or peat moss and sand (1:2, v/v) were investigated as soil mixture during the adaptation stage. The results referred that Paulownia species plantlets were successfully survived (100 %) in soil mixture contained peat moss: sand (1:2, v/v). This mixture recorded the highest values of plantlet height and number of leaves/plantlets.  相似文献   
88.
Root biomass allocation in the world's upland forests   总被引:36,自引:0,他引:36  
Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard methods are much less common. The goal of this work was to determine if a reliable method to estimate root biomass density for forests could be developed based on existing data from the literature. The forestry literature containing root biomass measurements was reviewed and summarized and relationships between both root biomass density (Mg ha−1) and root:shoot ratios (R/S) as dependent variables and various edaphic and climatic independent variables, singly and in combination, were statistically tested. None of the tested independent variables of aboveground biomass density, latitude, temperature, precipitation, temperature:precipitation ratios, tree type, soil texture, and age had important explanatory value for R/S. However, linear regression analysis showed that aboveground biomass density, age, and latitudinal category were the most important predictors of root biomass density, and together explained 84% of the variation. A comparison of root biomass density estimates based on our equations with those based on use of generalized R/S ratios for forests in the United States indicated that our method tended to produce estimates that were about 20% higher. Received: 3 July 1996 / Accepted: 23 January 1997  相似文献   
89.
Introduction of a large quantity of exogenous microorganisms may disrupt a local ecosystem and affect the natural microflora. In this work we investigated the effects of the introduction of a plant growth promoting strain of Burkholderia cepacia into the rhizosphere of maize on both indigenous B. cepacia populations and microbial community structure of total culturable bacteria using the concept of r/K strategy. Moreover we studied the distribution of bacterial populations in the root system at various soil depths. Seed bacterization was used as application method. Root colonization of the introduced strain occurred mainly on roots close to the plant stem, whereas indigenous B. cepacia was recovered at higher amounts from the lower parts of root systems of mature plants. As far as total culturable bacteria are concerned, an almost uniform distribution in the root system of mature plants was observed. The release of the exogenous bacterial strain affected mainly the microbial populations of young growing plants rather than mature plants. Indeed it caused only short-term perturbations in the microbial community of maize rhizosphere. Colonization of maize roots by indigenous B. cepacia was not significantly affected by the presence of the exogenous strain.  相似文献   
90.
Aluminum inhibition of root growth is a major world agricultural problem where the cause of toxicity has been linked to changes in cellular calcium homeostasis. Therefore, the effect of aluminum ions (Al) on changes in cytoplasmic free calcium concentration ([Ca2+]c) was followed in root hairs of wild-type, Al-sensitive and Al-resistant mutants of Arabidopsis thaliana (L.) Heynh. Generally, Al exposure resulted in prolonged elevations in tip-localized [Ca2+]c in both wild-type and Al-sensitive root hairs. However, these Al-induced increases in [Ca2+]c were not tightly correlated with growth inhibition, occurring up to 15 min after Al had induced growth to stop. Also, in 32% of root hairs examined growth stopped without a detectable change in [Ca2+]c. In contrast, Al-resistant mutants showed little growth inhibition in response to AlCl3 exposure and in no case was a change in [Ca2+]c observed. Of the other externally applied stresses tested (oxidative and mechanical stress), both were found to inhibit root hair growth, but only oxidative stress (H2O2, 10 μM) caused a prolonged rise in [Ca2+]c similar to that induced by Al. Again this increase occurred after growth had been inhibited. The lack of a tight correlation between Al exposure, growth inhibition and altered [Ca2+]c dynamics suggests that although exposure of root hairs to toxic levels of Al causes an alteration in cellular Ca2+ homeostasis, this may not be a required event for Al toxicity. The elevation in [Ca2+]c induced by Al also strongly suggests that the phytotoxic action of Al in root hairs is not through blockage of Ca2+-permeable channels required for Ca2+ influx into the cytoplasm. Received: 24 October 1997 / Accepted: 6 March 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号