首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5169篇
  免费   645篇
  国内免费   1440篇
  2024年   15篇
  2023年   117篇
  2022年   105篇
  2021年   168篇
  2020年   190篇
  2019年   244篇
  2018年   227篇
  2017年   239篇
  2016年   240篇
  2015年   231篇
  2014年   242篇
  2013年   316篇
  2012年   242篇
  2011年   287篇
  2010年   230篇
  2009年   280篇
  2008年   293篇
  2007年   324篇
  2006年   321篇
  2005年   225篇
  2004年   198篇
  2003年   195篇
  2002年   183篇
  2001年   173篇
  2000年   171篇
  1999年   153篇
  1998年   151篇
  1997年   134篇
  1996年   120篇
  1995年   109篇
  1994年   90篇
  1993年   96篇
  1992年   93篇
  1991年   103篇
  1990年   62篇
  1989年   82篇
  1988年   49篇
  1987年   65篇
  1986年   63篇
  1985年   85篇
  1984年   72篇
  1983年   47篇
  1982年   46篇
  1981年   61篇
  1980年   36篇
  1979年   43篇
  1978年   16篇
  1977年   11篇
  1976年   5篇
  1958年   2篇
排序方式: 共有7254条查询结果,搜索用时 15 毫秒
911.
The hypothesis was tested that potential tree height and biomass in mangroves decrease downstream with the tidal gradient along the Okukubi River in Okinawa Island, Japan. The mangrove stands consisted of Bruguiera gymnorrhiza (L.) Lamk. and Kandelia obovata (S., L.) Yong (Rhizophoraceae). Four sites were selected considering the distance from the mouth of the river. Soil salinity increased downstream, while soil total nitrogen content decreased. The soil redox potential did not vary along the river. Maximum gross photosynthesis and tree height for each species decreased downstream. The potential tree height (Hmax) inferred from the stem diameter (D0.1)–tree height (H) relationship ( a, h, coefficient) in each species decreased downstream. The tree density (ρ)–mean tree size () relationships ( K, α, coefficient) determined for four sites revealed that the mean tree size at any given tree density decreased downstream, which indicates the decrease of potential biomass. Furthermore, an index for biomass () was homogeneous within a site regardless of tree density, i.e. the value of α at each site did not differ significantly from 1.0 (p > 0.05). The decreases in potential tree height and biomass may be partially ascribed to the stressful environments at the downstream sites characterized by high salinity (>2.6%) and nitrogen-poor soils (<0.25 ppt) in our study area.  相似文献   
912.
The expression of defence-related peroxidases Prx7 and Prx8 in barley roots grown under selected abiotic stress conditions (toxic metals: Cd, Al, Co, Cu, Hg; drought, salinity, extreme temperatures: heat, cold) and compounds activating (2,4-D) or inhibiting (SHAM) POD activity as well as H2O2 and H2O2 scavenger (DTT) was characterized. Strong Cd concentration dependent expression of Prx8 peroxidase gene was observed, which correlated with root growth inhibition induced by Cd- and some other stress factors (heavy metals, heat and salinity). Application of H2O2 did not cause changes in expression of Prx8, but H2O2 scavenger (DTT) as well as the inhibitor (SHAM) and the activator (2,4-D) of PODs induced increase in Prx8 expression. Our results demonstrate that root growth inhibition during any disturbance of active oxygen species (AOS) in root tissue is correlated with up-regulation of Prx8 gene expression in barley roots.  相似文献   
913.
Chlamydomonas is one of the most well-studied photosynthetic organisms that had important biotechnological potential for future bioproductions of biofuels. However, an energy balance from incident photons to the energy stored in the new biomass is still lacking. In this study, we applied a recently developed system to measure the energy balance for steady state growth of Chlamydomonas reinhardtii grown at pH 6.5, and C. acidophila that was grown at pH 6.5 and 2.6. Energy use efficiency was quantified on the basis of light absorption, photosynthetic quantum yield, photosynthetic and respiratory quotient, and electron partitioning into proteins, carbohydrates and lipids. The results showed that lower growth rates of C. acidophila under both pH conditions were not caused by the differences in the photosynthetic quantum yield or in alternative electron cycling, but rather by differences in the efficiency of light absorption and increased dark respiration. Analysis of the macromolecular composition of the cells during the light phase showed that C. acidophila uses biosynthetic electrons preferentially for carbohydrate synthesis but not for synthesis of lipids. This led to a strong diurnal cycle of the C/N ratio and could explain the higher dark respiration of C. acidophila compared with C. reinhardtii .  相似文献   
914.
The biomasses, rate of apparent nitric oxide (NO)-release, nitric oxide synthase (NOS) activity as well as β-d-endo and exo-glucanase activity of the cell wall were analyzed and determined in the roots of maize seedlings. It was found that rhizospheric treatments of 2-phenyl-4,4,5,5-tetramethlimida-zoline-l-oxyl-3-oxide (PTIO), a NO scavenger, and radiation of enhanced ultraviolet-B (UV-B) to aerial parts of the seedling markedly inhibited the rate of NO release in roots, raised the activity of β-d-endo and exo-glucanase, and increased the biomasses of roots. The patent inhibitor, N-nitro-l-arginine (LNNA), of NOS was unable to inhibit NOS activity and NO generation. Inversely, reactive oxygen species (ROS) eliminator, N-acetyl-cysteine (NAC), stimulated the rate of NO release. There is no relationship between NOS activity and the rate of NO release. The latter showed a positive correlation with nitrate reductase (NR) activity, whereas it showed a negative correlation with the bio-masses and the activity of β-d-endo and exo-glucanase. All results implicated that NO was a by-product generated by NR catalysis, whereas NR activity was sensitively repressed by the systemic signal network (involved in ROS) induced by enhanced UV-B. It indicated that the downstream signal molecule of enhanced UV-B light is probably ROS which decreased NO generation through inhibiting NR activity. The endogenous NO generated by NR catalysis is perhaps such a messenger for restraining β-d-endo and exo-glucanase activity that the root growth was retarded.  相似文献   
915.
Cultures of seven Daphne species: Daphne caucasica, D. cneorum, D. giraldii, D. retusa, D. jasminea, D. laureola and D. tangutica were established in vitro on MS/WPM based media. Five of the species responded best on MS-based media (D. tangutica, D. laureola, D. caucasica, D. retusa and D. giraldii), while the remaining two species performed best on WPM-based media (D. cneorum, and D. jasminea). Shoot proliferation was achieved from both apical and nodal explants. Shoots were sub-cultured from stock cultures, cut into nodal explants 3–5 cm long and place vertically on basal media supplemented with different concentrations and combinations of cytokinins and auxins. Individual species displayed different responses to the various cytokinins and auxins. Among species, D. jasminea produced the greatest proliferation rate with an average of 7.84 + 0.6 shoots per explant on WPM supplemented with 2.32 μM BA + 0.0045 μM TDZ + 0.054 μM NAA, while the best multiplication rate for the same species grown on the same media supplemented with a single cytokinin (BA) and no auxin was 2.60 + 1.3 shoots per explant. Following multiplication, new shoots transferred to the elongation trails and then 50–100 mm Shoots used for rooting experiments. Increased rooting efficiencies were observed on in vitro-generated shoots with the two-layer medium or dipping methods over when PGRs were uniformly incorporated into the medium. Maximum rooting frequencies (average) ranged from 59% in D. tangutica to 85% in D. jasminea. Following in vitro rooting, rooted shoots immersed in 0.01% solution of humates and planted into a standard horticultural substrate composed and watered weekly with a solution containing half-strength MS salts.  相似文献   
916.
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.  相似文献   
917.
Adaptations of species to capture limiting resources is central for understanding structure and function of ecosystems. We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (ΨLeaf), hydraulic conductivity, wood density (ρw), rooting depth, and specific leaf area (SLA) were measured during two summers. Water potentials in the upper soil layers during a summer drought ranged from −2.3 to −3.6 MPa, increasing to −0.05 MPa below 150 cm. Predawn ΨLeaf was used as a surrogate of weighted mean soil water potential because no statistical differences in ΨLeaf were observed between exposed and covered leaves. Species-specific differences in predawn ΨLeaf were consistent with rooting depths. Predawn ΨLeaf ranged from −4.0 MPa for shallow rooted shrubs to −1.0 MPa for deep-rooted shrubs, suggesting that the roots of the latter have access to abundant moisture, whereas shallow-rooted shrubs are adapted to use water deposited mainly by small rainfall events. Wood density was a good predictor of hydraulic conductivity and SLA. Overall, we found that shallow rooted species had efficient water transport in terms of high specific and leaf specific hydraulic conductivity, low ρw, high SLA and a low minimum ΨLeaf that exhibited strong seasonal changes, whereas deeply rooted shrubs maintained similar minimum ΨLeaf throughout the year, had stems with high ρw and low hydraulic conductivity and leaves with low SLA. These two hydraulic syndromes were the extremes of a continuum with several species occupying different portions of a gradient in hydraulic characteristics. It appears that the marginal cost of having an extensive root system (e.g., high ρw and root hydraulic resistance) contributes to low growth rates of the deeply rooted species.  相似文献   
918.
The dicarboxylic acid malate has long been thought to play important roles in plant physiology. In addition to being a major photosynthate in C4 and CAM plants and an intermediate of the tricarboxylic acid cycle it has been proposed to play essential roles in pH regulation and important roles in pathogen response, as a component of the root exudates and as a regulatory osmolyte affecting stomatal function. Recent years have seen the cloning and functional analysis of a wide range of enzymes and transporters associated with malate metabolism. Here we attempt to provide a synthesis of research in this field as well as re-evaluating the role of this metabolite in mediating guard cell function.  相似文献   
919.
Conifer trees are routinely manipulated hormonally to increase flowering, branching, or adjust crown shape for production purposes. This survey of internal cytokinin levels provides a background for such treatments in Abies nordmanniana, a tree of great economic interest. Reference points in the crown and root system were sampled destructively in 4- and 6-year-old trees and analyzed for a range of cytokinins by LC-MS/MS. No seasonal patterns were detected in the root samples, and a major portion of cytokinin was in conjugated forms. Dramatic and consistent seasonal changes occurred in the crown, at levels 17–65 times higher than in the root. Predominant among crown cytokinins was ZR, except in the needles where IPR was also prominent. Within the crown, cytokinin profiles in different organs differed consistently. The leader bud showed a pronounced mid-June minimum, and a maximum later in summer. Subapical buds showed the same June minimum but peaked in mid autumn at a much lower level. Maxima in these buds were preceded by peaks in the subapical stem. Parallel patterns were observed in homologous tissues on branches.This pattern is consistent with two surges beginning in the uppermost stem tissues leading to subsequent accumulation or stimulated production within the buds. Strong differential hormonal profiles between adjacent buds with different fates agree with recent evidence of localized cytokinin production. The data suggest a reduced role of root-derived cytokinins in crown development. Practical cytokinin treatments for crown-shape regulation require close attention to dosage as well as precise timing and positioning.  相似文献   
920.
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUSCLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species. S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号