首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1176篇
  免费   63篇
  国内免费   26篇
  1265篇
  2023年   23篇
  2022年   35篇
  2021年   35篇
  2020年   24篇
  2019年   33篇
  2018年   47篇
  2017年   24篇
  2016年   26篇
  2015年   55篇
  2014年   84篇
  2013年   71篇
  2012年   70篇
  2011年   69篇
  2010年   50篇
  2009年   48篇
  2008年   54篇
  2007年   47篇
  2006年   52篇
  2005年   44篇
  2004年   36篇
  2003年   26篇
  2002年   31篇
  2001年   13篇
  2000年   26篇
  1999年   23篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   18篇
  1994年   7篇
  1993年   8篇
  1992年   8篇
  1991年   12篇
  1990年   6篇
  1989年   7篇
  1988年   12篇
  1987年   10篇
  1986年   4篇
  1985年   9篇
  1984年   17篇
  1983年   12篇
  1982年   19篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1975年   3篇
  1974年   8篇
  1973年   4篇
排序方式: 共有1265条查询结果,搜索用时 13 毫秒
41.
Summary Fox and Woese (1975a) have shown that a model of 5S RNA secondary structure similar to the one originally derived forChlorella 5S RNA can be generalized with relatively minor variations to all sequenced 5S RNA molecules, i.e. that corresponding base paired regions can be formed at approximately the same positions. We present experimental data in favour of this hypothesis and show that the points at which ribonucleases T1, T2 and pancreatic ribonuclease cleave six different 5S RNA molecules under mild conditions (high ionic strength, low temperature, low RNAase concentration) nearly always fall in the proposed single-stranded regions. We conclude that this model is a good approximation to the conformation of 5S RNA in solution.  相似文献   
42.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   
43.
44.
A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.  相似文献   
45.
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.  相似文献   
46.
Iron-sulfur (Fe-S) clusters are important prosthetic groups in all organisms. The biosynthesis of Fe-S clusters has been studied extensively in bacteria and yeast. By contrast, much remains to be discovered about Fe-S cluster biogenesis in higher plants. Plant plastids are known to make their own Fe-S clusters. Plastid Fe-S proteins are involved in essential metabolic pathways, such as photosynthesis, nitrogen and sulfur assimilation, protein import, and chlorophyll transformation. This review aims to summarize the roles of Fe-S proteins in essential metabolic pathways and to give an overview of the latest findings on plastidic Fe-S assembly. The plastidic Fe-S biosynthetic machinery contains many homologues of bacterial mobilization of sulfur (SUF) proteins, but there are additional components and properties that may be plant-specific. These additional features could make the plastidic machinery more suitable for assembling Fe-S clusters in the presence of oxygen, and may enable it to be regulated in response to oxidative stress, iron status and light.  相似文献   
47.
Intron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60. Heterologous Cpn60 protein was used in RNA protein gel mobility shift assays and revealed that the ATPase domains of Cpn60 mediates the specific binding of two group II intron RNAs, derived from the homologous chloroplast psaA gene and the heterologous mitochondrial LSU rRNA gene. The function of Cpn60 as a general organelle splicing factor is discussed.  相似文献   
48.
Since their discovery in 1993 and the introduction of the term microRNA in 2001, it has become evident that microRNAs (miRNAs) involved in many biological processes, including development, differentiation, proliferation and apoptosis. The function of miRNA the control of protein production in cells by sequence-specific targeting of mRNAs for translational repression or mRNA degradati Interestingly, immune genes are apparently preferentially targeted by miRNAs compared to the average of the human genome, indicat the significance of miRNA-mediated regulation for normal immune responses. Here, we review what is known about the role of miRN in the pathogenesis of immune-related diseases such as chronic inflammatory skin diseases, autoimmunity and viral infections.  相似文献   
49.
50.
It has been characterized that the programmed ribosomal ?1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal—an upstream, internal Shine–Dalgarno (SD) sequence—is also necessary to stimulate the efficient ?1 frameshifting. However, the molecular and physical mechanism of the ?1 frameshifting is poorly understood. Here, we propose a model of the pathway of the ?1 translational frameshifting during ribosome translation of the dnaX ?1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014) [29]) on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015) [30]) on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号