首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   3篇
  国内免费   8篇
  293篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   8篇
  2018年   1篇
  2017年   2篇
  2015年   7篇
  2014年   33篇
  2013年   37篇
  2012年   31篇
  2011年   42篇
  2010年   29篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   11篇
  2004年   4篇
  2003年   1篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有293条查询结果,搜索用时 6 毫秒
11.
12.
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate, resulting in a covalent S-sulfocysteine intermediate that is reduced in subsequent steps by thioredoxin to yield the sulfite product. Cys-249 resides on a mobile active site lid at the C terminus, within a K(R/T)ECG(L/I)H motif. Owing to its strict conservation among sulfonucleotide reductases and its proximity to the active site cysteine, it has been suggested that His-252 plays a key role in APR catalysis, specifically as a general base to deprotonate Cys-249. Using site-directed mutagenesis, we have changed His-252 to an alanine residue and analyzed the effect of this mutation on the kinetic parameters, pH rate profile, and ionization of Cys-249 of APR. Interestingly, our data demonstrate that His-252 does not perturb the pK(a) of Cys-249 or play a direct role in rate-limiting chemical steps of the reaction. Rather, we show that His-252 enhances substrate affinity via interaction with the α-phosphate and the endocyclic ribose oxygen. These findings were further supported by isothermal titration calorimetry to provide a thermodynamic profile of ligand-protein interactions. From an applied standpoint, our study suggests that small-molecules targeting residues in the dynamic C-terminal segment, particularly His-252, may lead to inhibitors with improved binding affinity.  相似文献   
13.
细胞色素P450酶的结构、功能与应用研究进展   总被引:2,自引:1,他引:2  
细胞色素P450 (cytochrome P450,CYP)酶是广泛存在于微生物、动植物及人体中与膜结合的血红蛋白类酶,具有氧化、环氧化、羟化、去甲基化等多种生物催化活性。CYP酶在药物、类固醇、脂溶性维生素和许多其他类型化学物质的代谢中具有重要作用,其在异源物质的解毒、药物相互作用和内分泌功能等领域的研究是热点问题。本综述对CYP的结构、功能、临床应用与开发前景进行了概述,并对其最新的研究现状和发展前景进行探讨。  相似文献   
14.
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.  相似文献   
15.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   
16.
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.  相似文献   
17.
本文报道人疱疹病豢-6型(HHV-6)pSTY28DNA片段的序列测定。应用分子克隆、缺损突变体(Dcletionmutant)制备和序列测定等技术,完成了3.9kbHHV-6pSTY28DNA片段的全序列测定。经DNASIS核酸蛋白软件分析,该片段含有两个开读框架(ORF)核糖核苷酸还原酶(RIR)ORF有2414个核苷酸,可编码805个氨基酸;P41蛋白由1100个核苷酸组成。与其他疱疹病毒作氨基酸同源性比较,HHV-6RiR与人巨细胞病毒(HCMV)有高度同源性,最适记分(Optimizedscore)达459。实验结果支持Esftathiou提出的论点,HHV-6属于β-疱疹病毒。  相似文献   
18.
Ribonucleotide reductases (RNRs) are uniquely responsible for converting nucleotides to deoxynucleotides in all dividing cells. The three known classes of RNRs operate through a free radical mechanism but differ in the way in which the protein radical is generated. Class I enzymes depend on oxygen for radical generation, class II uses adenosylcobalamin, and the anaerobic class III requires S-adenosylmethionine and an iron–sulfur cluster. Despite their metabolic prominence, the evolutionary origin and relationships between these enzymes remain elusive. This gap in RNR knowledge can, to a major extent, be attributed to the fact that different RNR classes exhibit greatly diverged polypeptide chains, rendering homology assessments inconclusive. Evolutionary studies of RNRs conducted until now have focused on comparison of the amino acid sequence of the proteins, without considering how they fold into space. The present study is an attempt to understand the evolutionary history of RNRs taking into account their three-dimensional structure. We first infer the structural alignment by superposing the equivalent stretches of the three-dimensional structures of representatives of each family. We then use the structural alignment to guide the alignment of all publicly available RNR sequences. Our results support the hypothesis that the three RNR classes diverged from a common ancestor currently represented by the anaerobic class III. Also, lateral transfer appears to have played a significant role in the evolution of this protein family.  相似文献   
19.
Ribonucleotide reductase (RR) is a key regulatory enzyme in the DNA synthesis pathway and is the target of the cancer chemotherapeutic agent hydroxyurea. The study of RR is significantly hindered by the tedious and labor-intensive nature of enzymatic assay. In this report, we present a novel RR assay in which detection of the deoxyribonucleotides produced by RR occurs via coupling to the DNA polymerase reaction, and is enhanced by using RNase to degrade endogenous RNA. Cell extracts from various cell lines were treated with RNase and then reacted with ATP and radioactive ribonucleotide diphosphate as the substrate. Incorporation of the radioactive substrate [14C]CDP into DNA was linear over 30 min and was linear with the amount of extract, which provided RR activity. The reaction was inhibited by hydroxyurea and required Mg2+ and ATP, suggesting that the assay is specific to RR activity. While RR activities determined by our method and by a conventional method were comparable, this novel method proved to be simpler, faster, more sensitive and less expensive. In addition, assay of the RR activity for multiple samples can easily be performed simultaneously. It is superior to other RR assays in all aspects.  相似文献   
20.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号