首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   3篇
  国内免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   8篇
  2018年   1篇
  2017年   2篇
  2015年   7篇
  2014年   33篇
  2013年   37篇
  2012年   31篇
  2011年   42篇
  2010年   29篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   11篇
  2004年   4篇
  2003年   1篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有293条查询结果,搜索用时 244 毫秒
1.
2.
Free radical mechanisms in enzyme reactions   总被引:1,自引:0,他引:1  
Free radicals are formed in prosthetic groups or amino acid residues of certain enzymes. These free radicals are closely related to the activation process in enzyme catalysis, but their formation does not always result in the formation of substrate free radicals as a product of the enzyme reactions. The role of free radicals in enzyme catalysis is discussed.  相似文献   
3.
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.  相似文献   
4.
边缘性缺乏抗坏血酸之豚鼠,于三周内其肝脏及小肠粘膜3-羟-3-甲基戊二酰辅酶A还原酶(HMGR)活力均下降到原有水平的50%,但肝脏胆固醇7α-羟化酶活力尚无显著性改变。坏血病豚鼠(三周内)上述几种酶活力都下降至原有水平的50%左右。豚鼠摄取抗坏血酸不足,其血清总胆固醇浓度显著增加,而血清高密度脂蛋自胆固醇浓度显著减少,其改变程度与抗坏血酸缺乏状况一致。  相似文献   
5.
本文报道人疱疹病豢-6型(HHV-6)pSTY28DNA片段的序列测定。应用分子克隆、缺损突变体(Dcletionmutant)制备和序列测定等技术,完成了3.9kbHHV-6pSTY28DNA片段的全序列测定。经DNASIS核酸蛋白软件分析,该片段含有两个开读框架(ORF)核糖核苷酸还原酶(RIR)ORF有2414个核苷酸,可编码805个氨基酸;P41蛋白由1100个核苷酸组成。与其他疱疹病毒作氨基酸同源性比较,HHV-6RiR与人巨细胞病毒(HCMV)有高度同源性,最适记分(Optimizedscore)达459。实验结果支持Esftathiou提出的论点,HHV-6属于β-疱疹病毒。  相似文献   
6.
Paramecium is a valuable eukaryotic model system for studying chemosensory transduction, adaptation and cellular sensory integration. While millimolar amounts of many attractants hyperpolarize and cause faster forward swimming, oxidants are repellents that depolarize and cause backward swimming at micromolar concentrations. The non-permeant oxidants cytochrome c, nitro blue tetrazolium and ferricyanide are repellents with half maximal concentrations of 0.4 M, 2.2 M and 100 M respectively. In vivo reductase activities follow the same order of potencies. The concentration dependence of the cytochrome c reductase activity is well correlated with cytochrome c-induced depolarizations. This suggests that plasma membrane reduction of external cytochrome c is electrogenic, causing membrane depolarization and chemorepulsion. The reductase activity also appears to be voltage dependent. Depolarization by either K+, Na+, Ca+ or Mg+ correlates with inhibition of both in vivo reductase activities and cytochrome c-induced membrane potential changes. These responses were also seen in deciliated cells, showing that the body plasma membrane is sufficient for the response. Both chloroquine and diphenyleneiodonium inhibited reductase activities but only at unusually high concentrations. This activity showed no pH dependence in the physiological range. We propose that a plasma membrane bound NADPH-dependent reductase controls oxidant-induced depolarizations and consequent chemorepulsion.Abbreviations bmv Body plasma membrane vesicles - BPS Bathophenanthroline disulfonate - cAMP Cyclic adenosine monophosphate - cmv Ciliary membrane vesicles - cyt c Cytochrome c - DPI Diphenyleneiodonium - EC 50 Concentration for 50% effectiveness - FeCN Ferricyanide [Fe(CN)6–3] - FeEDTA Ethylenediaminetetracetic acid (ferric-sodium salt) - GTP Guanosine 5-triphosphate - KCN Potassium cyanide - mM Millimolar - MOPS 3-(N-morpholino) propanesulfonic acid - mV Millivolts - NADH Nicotinamide adenine dinucleotide (reduced form) - NADPH Nicotinamide adenine dinucleotide phosphate (reduced form) - NBT Nitro blue tetrazolium - nm Nanometer - pCMB p-Chloromercuribenzoate - PMA Phorbol 12-myristate 13-acetate - s.d. Standard deviation - SOD Superoxide dismutase - Tris Tris(hydroxymethyl)aminomethane - M Micromolar  相似文献   
7.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   
8.
Vascular calcification is strongly linked with increased morbidity and mortality from cardiovascular disease. Vascular calcification is an active cell-mediated process that involves the differentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. Several inhibitors of this process have been identified, including insulin-like growth factor-I (IGF-I). In this study, we examined the role of the IGF receptor (IGFR) and the importance of IGFR glycosylation in the maintenance of the VSMC phenotype in the face of factors known to promote osteogenic conversion. IGF-I (25 ng/ml) significantly protected VSMCs from β-glycerophosphate-induced osteogenic differentiation (p < 0.005) and mineral deposition (p < 0.01). Mevalonic acid depletion (induced by 100 nm cerivastatin) significantly inhibited these IGF protective effects (p < 0.01). Mevalonic acid depletion impaired IGFR processing, decreased the expression of mature IGFRs at the cell surface, and inhibited the downstream activation of Akt and MAPK. Inhibitors of N-linked glycosylation (tunicamycin, deoxymannojirimycin, and deoxynojirimycin) also markedly attenuated the inhibitory effect of IGF-I on β-glycerophosphate-induced mineralization (p < 0.05) and activation of Akt and MAPK. These results demonstrate that alterations in the glycosylation of the IGFR disrupt the ability of IGF-I to protect against the osteogenic differentiation and mineralization of VSMCs by several interrelated mechanisms: decreased IGFR processing, reduced IGFR cell-surface expression, and reduced downstream signaling via the Akt and MAPK pathways. IGF-I thus occupies a critical position in the maintenance of normal VSMC phenotype and protection from factors known to stimulate vascular calcification.  相似文献   
9.
Nitric oxide (NO) is an important molecule that acts in many tissues to regulate a diverse range of physiological processes. It is becoming apparent that NO is a ubiquitous signal in plants. Since the discovery of NO emission by plants in the 1970s, this gaseous compound has emerged as a major signalling molecule involved in multiple physiological functions. Research on NO in plants has gained significant awareness in recent years and there is increasing indication on the role of this molecule as a key-signalling molecule in plants. The investigations about NO in plants have been concentrated on three main fields: The search of NO or any source of NO generation, effects of exogenous NO treatments, NO transduction pathways. However we have limited information about signal transduction procedures by which NO interaction with cells results in altered cellular activities. This article reviews recent advances in NO synthesis and its signalling functions in plants. First, different sources and biosynthesis of NO in plants, then biological processes involving NO signalling are reviewed. NO signalling relation with cGMP, protein kinases and programmed cell death are also discussed. Besides, NO signalling in plant defense response is also examined. Especially NO signalling between animal and plant systems is compared.  相似文献   
10.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号