首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   6篇
  国内免费   7篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   11篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   8篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
排序方式: 共有180条查询结果,搜索用时 203 毫秒
41.
Explants of Chenopodium rubrum, a short-day plant, were decapitated and exposed to floral inductive treatment, and the extent of flowering of axillary buds was afterwards assessed. Isolated buds never responded to induction, whereas the presence of the petiole of the subtending leaf already assured a high degree of flowering. We may assume either that the petiole is the receptor organ of the photoperiodic signal or that its transporting role is indispensable.  相似文献   
42.
The effect of the electrical potential on the H+-ATPase of Rhodospirillum rubrum is examined. It is shown that the forward reaction rate (ATP synthesis) is increased by a factor of 10 during illumination while the reversed rate is only slightly decreased. This indicates that the electrical potential across the membrane affects the rate constants mainly by increasing the forward rate constants rather than decreasing the reversed rate constants in order to go from net hydrolysis to net synthesis.  相似文献   
43.
Olli  Kalle  Heiskanen  Anna-Stiina  Lohikari  Kaarina 《Hydrobiologia》1997,363(1-3):179-189
Vertical migration of two dinoflagellate species (Peridiniellacatenata and Scrippsiella hangoei) and a phototrophic ciliate(Mesodinium rubrum) were studied during the peak and decline of avernal bloom at the SW coast of Finland. During the diel cycle, part of thepopulations of P. catenata and M. rubrum wereobserved in the deeper layers with elevated nutrient concentrations, whileS. hangoei remained in the upper nutrient depleted mixed layer.Using a correspondence analysis the vertical distribution patterns of thespecies and chlorophyll a were examined over a temporal scale of hoursand weeks. The vertical migration was reflected in much higher variabilityin the depth distribution of P. catenata and M. rubrum over a diel scale, compared to S. hangoei. The analysisrevealed also significant differences in species specific depth distributionpatterns over both time scales. It is discussed that the co-existence of thetwo dominant dinoflagellate species during the vernal bloom is due to nicheseparation through behavioural adaptations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
44.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   
45.
46.
Abstract. Suspension cultured cells of Chenopodium rubrum were grown photoautotrophically under a diurnal light-dark cycle of 16-8h. The following phases of the batch culture were differentiated: a short lag, a cell division phase terminated by a pronounced transition to stationary maintenance which finally gradually passed into senescence. Nitrogen fluxes typical of these stages were followed by measuring uptake of NO3 and NH4+ from the medium and their incorporation into the cellular fractions of nitrogenous compounds. Activities of seven N-metabolizing enzymes were determined. Compartmentation of enzymes and nitrogenous compounds was analysed after isolation of intact chloroplasts and vacuoles from protoplasts. Eighty-two per cent of the N originally present in the medium was taken up and incorporated to an extent of 80% into protein until the end of the division phase. Net protein synthesis ceased upon transition to the stationary phase. During the division phase a vacuolar pool of NO3 was established and then maintained throughout the resting phase. Free cellular NH4+ was not localized within the vacuole and responded to the ammonium content of the medium. Amino acids accumulated in the cells especially during the stationary phase, during which they were present in the vacuole. Typical nitrogen relations are portrayed as flux diagrams for one day of each of the essential developmental phases. The enzyme activities were easily sufficient to account for the observed flow rates of the corresponding nitrogenous compounds. Hence, uptake of NO3 and NH4+ must be considered as steps limiting N metabolism in Chenopodium rubrum cell suspensions.  相似文献   
47.
The kinetics of vacuolar acidification upon addition of ATP and/or pyrophosphate (PPi) has been assayed on single immobilized vacuoles by computer-aided microfluorimetry of 9-aminoacridine, and by acridine orange absorption photometry on vacuole suspensions isolated from green suspension cells of Chenopodium rubrum L. Two proton pumps at the tonoplast, an ATPase and a pyrophosphatase (PPase), operate in parallel to acidify the vacuole with different contributions adding up to a transtonoplast Δ pH of 2.6 pH units at external pH 7.2. The saturable components of proton pumping reach half maximal velocity with 0.32 ± 0.06 mM ATP and 23 ± 2.5 μM PPi, respectively. At saturating substrate concentrations, ATPase and PPase hydrolyse ATP and PPi, respectively, at a ratio of 2.3. The same ratio holds for the corresponding proton fluxes maintaining a given steady-state vacuolar pH. We conclude that both pumps operate at the same stoichiometry.  相似文献   
48.
49.
Diurnal regulation of photosynthesis in understory saplings   总被引:6,自引:1,他引:5  
Photosynthetic rates of plants grown in natural systems exhibit diurnal patterns often characterized by an afternoon decline, even when measured under constant light and temperature conditions. Since we thought changes in the carbohydrate status could cause this pattern through feedback from starch and sucrose synthesis, we studied the natural fluctuations in photosynthesis rates of plants grown at 36 and 56 Pa CO2 at a FACE (free-air-CO2-enrichment) research site. Light-saturated photosynthesis varied by 40% during the day and was independent of the light-limited quantum yield of photosynthesis, which varied little through the day. Photosynthesis did not correspond with xylem water potential or leaf carbohydrate build-up, but rather with diurnal changes in air vapor-pressure deficit and light. The afternoon decline in photosynthesis also corresponded with decreased stomatal conductance and decreased Rubisco carboxylation efficiency which in turn allowed leaf-airspace CO2 partial pressure to remain constant. Growth at elevated CO2 did not affect the afternoon decline in photosynthesis, but did stimulate early-morning photosynthesis rates relative to the rest of the day. Plants grown at 56 Pa CO2 had higher light-limited quantum yields than those at 36 Pa CO2 but, there was no growth–CO2 effect on quantum yield when measured at 2 kPa O2. Therefore, understory plants have a high light-limited quantum yield that does not vary through the day. Thus, the major diurnal changes in photosynthesis occur under light-saturated conditions which may help understory saplings maximize their sunfleck-use-efficiency.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号