首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   63篇
  国内免费   14篇
  2023年   17篇
  2022年   14篇
  2021年   15篇
  2020年   20篇
  2019年   38篇
  2018年   36篇
  2017年   14篇
  2016年   18篇
  2015年   33篇
  2014年   71篇
  2013年   98篇
  2012年   68篇
  2011年   96篇
  2010年   60篇
  2009年   47篇
  2008年   54篇
  2007年   61篇
  2006年   65篇
  2005年   45篇
  2004年   67篇
  2003年   41篇
  2002年   31篇
  2001年   18篇
  2000年   13篇
  1999年   16篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有1081条查询结果,搜索用时 15 毫秒
71.
Ras super-family small GTPases regulate diverse cellular processes such as vesicular transport and signal transduction. Critical to these activities is the ability of these proteins to target to specific intracellular membranes. To allow association with membranes Ras-related GTPases are post-translationally modified by covalent attachment of prenyl groups to conserved cysteine residues at or near their C-terminus. Here we used the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGCR) inhibitor mevastatin to develop a ‘prenylation block-and-release’ assay that allows membrane targeting of prenylated proteins to be visualized in living cells. Using this assay we investigated the cytosol to membrane targeting of several small GTPases to compartments of the secretory and endocytic pathways. We found that all Rabs tested were targeted directly to the membrane on which they reside at steady-state and not via an intermediate location as reported for Ras and Rho proteins. However, we observed that the kinetics of cytosol to membrane targeting differed for each Rab tested. Comparison of the mevastatin sensitivity and kinetics of membrane targeting of Rab23, Rab23 prenylation motif mutants and H-Ras revealed that these parameters are strongly dependent upon the prenyl transferase with Rab geranylgeranyl transferase substrates exhibiting higher sensitivity and requiring greater time to recover from mevastatin inhibition than farnesyl transferase substrates. We propose that this assay is a useful tool to investigate the kinetics, biological functions and the mechanisms of membrane targeting of prenylated proteins.  相似文献   
72.
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.  相似文献   
73.
Cytokinesis is the last step of the M (mitosis) phase,yet it is crucial for the faithful division of one cell into two.Cytokinesis failure is often associated with cancer.Cytokinesis can be morphologically divided into four steps:cleavage furrow initiation,cleavage furrow ingression,midbody formation and abscission.Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis.At the same time,Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis,including cytokinesis.Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks.More specifically,Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1,thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains.Ect2 itself can be phosphorylated by Plk1 in vitro.Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity.Once activated,RhoA-GTP will activate downstream effectors,including ROCK1 and ROCK2.ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen,and Plk1 can phosphorylate ROCK2 in vitro.We review current understandings of the interplay between Plk1,RhoA proteins and other proteins (e.g.,NudC,MKLP2,PRC1,CEP55) involved in cytokinesis,with partitular emphasis of its clinical implications in cancer.  相似文献   
74.
Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.  相似文献   
75.
We investigated the effects of fasudil, a Rho kinase inhibitor, on hypertension in spontaneously hypertensive rats and on the catecholamine synthetic pathway. Ten-week-old male SHR and Wistar-Kyoto rats were administered fasudil (10 mg/kg/day s.c.) for 4 days. Systolic blood pressure was measured using the tail-cuff method. Catecholamine levels were measured with high-performance liquid chromatography-ECD methods. Tyrosine hydroxylase protein levels were measured in Western blot analysis. The tyrosine hydroxylase mRNA level was measured using real-time PCR methods. Fasudil significantly decreased systolic blood pressure in spontaneously hypertensive rats, but not in Wistar-Kyoto rats. Fasudil also significantly decreased catecholamine, tyrosine hydroxylase protein, and tyrosine hydroxylase mRNA levels in the adrenal medulla of spontaneously hypertensive rats. These results suggest that the depressor effects of fasudil on hypertension in spontaneously hypertensive rats may be related to inhibition of the catecholamine synthetic pathway.  相似文献   
76.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   
77.
Proteolytic processing of the amyloid precursor protein (APP) is modulated by the action of enzymes alpha-, beta- and gamma-secretases, with the latter two mediating the amyloidogenic production of amyloid-beta (Abeta). Cellular modulators of APP processing are well known from studies of genetic mutations (such as those found in APP and presenilins) or polymorphisms (such as the apolipoprotein E4 epsilon-allele) that predisposes an individual to early or late-onset Alzheimer's disease. In recent years, several classes of molecule with modulating functions in APP processing and Abeta secretion have emerged. These include the neuronal Munc-18 interacting proteins (Mints)/X11s, members of the reticulon family (RTN-3 and RTN-4/Nogo-B), the Nogo-66 receptor (NgR), the peptidyl-prolyl isomerase Pin1 and the Rho family GTPases and their effectors. Mints and NgR bind to APP directly, while RTN3 and Nogo-B interact with the beta-secretase BACE1. Phosphorylated APP is a Pin1 substrate, which binds to its phosphor-Thr668-Pro motif. These interactions by and large resulted in a reduction of Abeta generation both in vitro and in vivo. Inhibition of Rho and Rho-kinase (ROCK) activity may underlie the ability of non-steroidal anti-inflammatory drugs and statins to reduce Abeta production, a feat which could also be achieved by Rac1 inhibition. Detailed understanding of the underlying mechanisms of action of these novel modulators of APP processing, as well as insights into the molecular neurological basis of how Abeta impairs leaning and memory, will open up multiple avenues for the therapeutic intervention of Alzheimer's disease.  相似文献   
78.
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.  相似文献   
79.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   
80.
Intercellular adhesions between renal glomerular epithelial cells (also called podocytes) are necessary for the proper function of the glomerular filtration barrier. Although our knowledge of the molecular composition of podocyte cell-cell contact sites has greatly progressed, the underlying molecular mechanism regulating the formation of these cell-cell contacts remains largely unknown. We have used forskolin, an activator of adenylyl cyclase that elevates the level of intracellular cAMP, to investigate the effect of cAMP and three Rho-family small GTPases (RhoA, Cdc42, and Rac1) on the regulation of cell-cell contact formation in a murine podocyte cell line. Transmission electron microscopy and the immunostaining of cell adhesion molecules and actin-associated proteins have revealed a structural change at the site of cell-cell contact following forskolin treatment. The activity of the Rho-family small GTPases before and after forskolin treatment has been evaluated with a glutathione-S-transferase pull-down assay. Forskolin reinforces the integrity of cell-cell contacts, resulting in the closure of an intercellular adhesion zipper, accompanied by a redistribution of cell adhesion molecules and actin-associated proteins in a continuous linear pattern at cell-cell contacts. The Rho-family small GTPases Rac1 and Cdc42 are activated during closure of the adhesion zipper, whereas RhoA is suppressed. Thus, cAMP promotes the assembly of cell-cell contacts between podocytes via a mechanism that probably involves Rho-family small GTPases. This study was supported in part by a grant-in-aid for scientific research from the Japanese Ministry for Education, Culture, Sports, Science, and Technology (to N. K., no. 14570015). S-Y.G. is a recipient of a grant awarded by the Japanese government to graduate students from foreign countries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号