首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   63篇
  国内免费   14篇
  2023年   17篇
  2022年   10篇
  2021年   15篇
  2020年   20篇
  2019年   38篇
  2018年   36篇
  2017年   14篇
  2016年   18篇
  2015年   33篇
  2014年   71篇
  2013年   98篇
  2012年   68篇
  2011年   96篇
  2010年   60篇
  2009年   47篇
  2008年   54篇
  2007年   61篇
  2006年   65篇
  2005年   45篇
  2004年   67篇
  2003年   41篇
  2002年   31篇
  2001年   18篇
  2000年   13篇
  1999年   16篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
11.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
12.
Overnight culture of Swiss 3T3 cells in serum-free medium leads to loss of focal adhesions and associated actin stress fibres, although the cells remain well spread. The small GTP-binding protein Rho is required for the formation of stress fibres and focal adhesions induced by growth factors such as lysophosphatidic acid (LPA) in serum-starved Swiss 3T3 cells, and for the LPA-induced tyrosine phosphorylation of several focal adhesion proteins. Plating of cells on extracellular matrix proteins also stimulates protein tyrosine phosphorylation and the formation of stress fibres and focal adhesions in the absence of added growth factors. These responses were inhibited in cells scrape-loaded with the Rho inhibitor C3 transferase. Focal adhesion and stress fibre formation was also triggered by addition of a peptide GRGDS, which is recognised by a number of integrins and is contained within the cell binding domain of a variety of extracellular matrix proteins. The activity of the GRGDS peptide was blocked by microinjecting cells with C3 transferase, suggesting that peptide binding to integrins stimulates a Rho-dependent assembly of focal adhesions. These experiments indicate that Rho is involved in signalling downstream of integrins.  相似文献   
13.
In the yeast Saccharomyces cerevisiae, small GTPase Rho1 controls polarized actin distribution and cell wall expansion in response to many different environmental and intracellular stimuli. Its activity is essential for cell survival and adaptation under various stress conditions. A recent study identified the TOR complex 1 (TORC1), a central regulator in cell growth and metabolism, as a direct target of the small GTPase. This novel crosstalk extends the signaling network of Rho1 into many TORC1-dependent processes and sheds light on how yeast cells coordinate polarized spatial expansion with mass increase.  相似文献   
14.
Drosophila Smaug is a sequence-specific RNA-binding protein that can repress the translation and induce the degradation of target mRNAs in the early Drosophila embryo. Our recent work has uncovered a new mechanism of Smaug-mediated translational repression whereby it interacts with and recruits the Argonaute 1 (Ago1) protein to an mRNA. Argonaute proteins are typically recruited to mRNAs through an associated small RNA, such as a microRNA (miRNA). Surprisingly, we found that Smaug is able to recruit Ago1 to an mRNA in a miRNA-independent manner. This work suggests that other RNA-binding proteins are likely to employ a similar mechanism of miRNA-independent Ago recruitment to control mRNA expression. Our work also adds yet another mechanism to the list that Smaug can use to regulate its targets and here we discuss some of the issues that are raised by Smaug’s multi-functional nature.  相似文献   
15.
《Autophagy》2013,9(11):1682-1683
Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal membranes, the molecular mechanism underlying these membrane trafficking steps remains elusive. To address this question we performed a systematic analysis testing all known Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins for their ability to inhibit autophagosome formation by disrupting a specific membrane trafficking step. TBC proteins are thought to act as inhibitors of Rab GTPases, which regulate membrane trafficking events. Up to 11 TBC proteins inhibit autophagy when overexpressed and one of these, TBC1D14, acts at an early stage during autophagosome formation and is involved in regulating recycling endosomal traffic. We found that the early acting autophagy proteins ATG9 and ULK1 localize to transferrin receptor (TFR)-positive recycling endosomes (RE), which are tubulated by excess TBC1D14 leading to an inhibition of autophagosome formation. Finally, transferrin (TF)-containing recycling endosomal membranes can be incorporated into newly forming autophagosomes, although it is likely that most of the autophagosome membrane is subsequently acquired from other sources.  相似文献   
16.
17.
Molecular docking and pharmacophore model approaches were used to characterise the binding features of four different series of Rho kinase (ROCK) inhibitors. Docking simulation of 20 inhibitors with ROCK was performed. The binding conformations and binding affinities of these inhibitors were obtained using AutoDock 4.0 software. The predicted binding affinities correlate well with the activities of these inhibitors (R 2 = 0.904). 3D pharmacophore models were generated for ROCK based on highly active inhibitors implemented in Catalyst 4.11 program. The best pharmacophore model consists of one hydrogen bond acceptor feature and two hydrophobic features, and they all seemed to be essential for inhibitors in terms of their binding activities. It is anticipated that the findings reported in this paper may provide very useful information for designing new ROCK inhibitors.  相似文献   
18.
Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternary GTP complex after productive G-protein activation (G-protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange.  相似文献   
19.
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved “CAAX” box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal “insert” domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh−/− mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh−/− T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.  相似文献   
20.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号