全文获取类型
收费全文 | 16071篇 |
免费 | 825篇 |
国内免费 | 393篇 |
专业分类
17289篇 |
出版年
2023年 | 126篇 |
2022年 | 206篇 |
2021年 | 269篇 |
2020年 | 295篇 |
2019年 | 271篇 |
2018年 | 405篇 |
2017年 | 274篇 |
2016年 | 293篇 |
2015年 | 417篇 |
2014年 | 560篇 |
2013年 | 790篇 |
2012年 | 344篇 |
2011年 | 503篇 |
2010年 | 463篇 |
2009年 | 620篇 |
2008年 | 672篇 |
2007年 | 688篇 |
2006年 | 634篇 |
2005年 | 587篇 |
2004年 | 522篇 |
2003年 | 472篇 |
2002年 | 486篇 |
2001年 | 375篇 |
2000年 | 362篇 |
1999年 | 369篇 |
1998年 | 318篇 |
1997年 | 303篇 |
1996年 | 298篇 |
1995年 | 290篇 |
1994年 | 307篇 |
1993年 | 293篇 |
1992年 | 279篇 |
1991年 | 282篇 |
1990年 | 265篇 |
1989年 | 275篇 |
1988年 | 255篇 |
1987年 | 249篇 |
1986年 | 234篇 |
1985年 | 282篇 |
1984年 | 366篇 |
1983年 | 221篇 |
1982年 | 344篇 |
1981年 | 285篇 |
1980年 | 238篇 |
1979年 | 199篇 |
1978年 | 122篇 |
1977年 | 136篇 |
1976年 | 117篇 |
1974年 | 72篇 |
1973年 | 97篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
From cilia and flagella to intracellular motility and back again: a review of a few aspects of microtubule-based motility 总被引:1,自引:0,他引:1
P Huitorel 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,63(2):249-258
Ciliary or flagellar movement is the model of microtubule-dependent motility, the best studied at the molecular level. It is based on the relative sliding of outer doublets of microtubules that are linked at their proximal end to the basal structure and interconnected by associated proteins, among which dynein ATPase is at the origin of the movement. It is regulated from inside and outside media by various diffusible factors such as Ca2+, cyclic adenosine monophosphate (cAMP), polypeptides and so on (see other conferences presented during this meeting). Other motility processes are based on microtubules: vesicle and organelle transport through the cytoplasm (axonal flow in neurons, pigment granule movements in fish chromatophores, movements of particles along heliozoan axopods, etc.) could be mediated by microtubule motors such as kinesin or MAP 1C. Kinesin and MAP 1C, like dynein, are proteins that bind to microtubules and show an ATPase activity associated with force production. They differ from each other by their structure, and biochemical and pharmacological properties. The movements of chromosomes during mitosis and meiosis have long been studied, but are still poorly understood at the molecular level; this topic will be discussed in the light of recent data. Other constituents of the cytoskeleton are certainly involved in cellular motility: actin microfilaments and their motor myosin, intermediate filaments, non-actin filaments, all organized around the Microtubule Organizing Center (MTOC). As more information becomes available, it seems increasingly obvious that these various networks are closely interconnected and that each component probably modulates, resists, or favors properties of its partners, contributing to cellular and intracellular motility. 相似文献
32.
pH Dependence of Histidine Affinity for Blood-Brain Barrier Carrier Transport Systems for Neutral and Cationic Amino Acids 总被引:1,自引:1,他引:0
William H. Oldendorf Paul D. Crane† Leon D. Braun Eddy A. Gosschalk Jared M. Diamond† 《Journal of neurochemistry》1988,50(3):857-861
The effects of pH (3.5-7.5) on the brain uptake of histidine by the blood-brain barrier (BBB) carriers for neutral and cationic amino acids were tested, in competition with unlabeled histidine, arginine, or phenylalanine, with the single-pass carotid injection technique. Cationic amino acid ( [14C]arginine) uptake was increasingly inhibited by unlabeled histidine as the pH of the injection solution decreased. In contrast, the inhibitory effect of unlabeled histidine on neutral amino acid ( [14C]phenylalanine) uptake decreased with decreasing pH. Brain uptake indices with varying histidine concentrations indicated that the neutral form of histidine inhibited phenylalanine uptake whereas the cationic form competed with arginine uptake. Since phenylalanine decreased [14C]histidine uptake at all pH values whereas arginine did not, it was concluded that the cationic form of histidine had an affinity for the cationic carrier, but was not transported by it. We propose that the saturable entry of histidine into brain is, under normal physiological circumstances, mediated solely by the carrier for neutral amino acids. 相似文献
33.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE
sodium dodecyl sulfate-polyacryl-amide gel electrophoresis
This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland). 相似文献
34.
Cecilia Zazueta José A. Holguín Jorge Ramírez 《Journal of bioenergetics and biomembranes》1991,23(6):889-902
We describe a calcium transport that is sensitive to ruthenium red in liposomes reconstituted with mitochondrial extracts. This system is able to build an internally negative membrane potential, which allows the electrogenic influx of Ca2+ and Sr2+. Proteins with molecular weights higher than 35 kDa were incorporated to the vesicles, and enhanced the accumulation of the cation in an energy-dependent fashion. 相似文献
35.
Summary In the intact, in vitro frog skin, isoproterenol (ISO) stimulates and amiloride-insensitive increase in short-circuit current (SCC) that can be localized to the exocrine glands and is associated with secretion of chloride. To determine which cells in the glands respond to stimulation we measured the intracellular electrolyte concentrations of the various cell types of the mucous and seromucous glands of the skin using freeze-dried cryosections and electron microprobe analysis. In the resting state, the various cell types of the glands have intracellular electrolyte concentrations similar to the epithelial cells of the skin. Exposure to amiloride (10–4
m) has little effect on the concentration of Na and Cl in the cells of the glands. The effect of isoproterenol has two distinct phases. Analysis of glands in tissues frozen at the peak of the SCC response (13 min after addition of isoproterenol) shows that the only significant change is an increase in Na and Ca in a group of cells at the ductal pole of the acini of both gland types. These are termed gland cells. The duct cells and cells that secrete macromolecules did not show any significant changes at this timepoint. In the gland cells, after a one-hour exposure to isoproterenol the Na concentration is at prestimulation levels while Cl drops. There is also a smaller drop in Cl in the duct and skin epithelial cells. Ouabain, which can completely block the isoproterenol SCC response, has little short-term effect on Na and Cl in the control gland but accentuates the gain of Na and drop in Cl in the isoproterenol-treated condition. Bumetanide and, to a lesser extent, furosemide, also blocks the isoproterenol SCC response and causes a further drop in Cl. The results provide indirect evidence that a major portion of the ionic component of the gland secretion is produced by a distinct group of cells separate from those producing the macromolecular component and that the mechanism of secretion involves a Na:Cl coupled transport system linked to the activity of the basolateral Na pump. 相似文献
36.
Summary A model has been developed for 5-nitroxide stearate, I(12,3), distribution in human erythrocyte ghosts which accurately predicts ESR spectral alterations observed with increased probe/total lipid (P/L) at 37°C. This spin probe occupies a class of high-affinity, noninteracting sites at low loading. Saturation occurs with increasing probe concentration, and, at higher loading, the probe inserts itself at initially dilute sites to form membranebound clusters of variable size. No low probe remains at high P/L where all I(12,3) clusters in a concentrated phase. This model allows determination of the dilute/clustered probe ratio, and shows that I(12,3) segregates in erythrocytes at what might otherwise be considered low P/L (e.g., 1/359). These findings validate the earlier use of empirical parameters to estimate probe sequestration in biological membranes. 相似文献
37.
In cell suspensions of Pseudomonas carboxydovorans pulsed with lithotrophic substrates (CO or H2) in the presence of oxygen, formation of reduced pyridine nucleotides and of ATP could be demonstrated using the bioluminescent assay. Experiments employing base-acid transition, an uncoupler and inhibitors of ATPase or electron transport enabled us to propose a model for the formation of NAD(P)H in chemolithotrophically growing P. carboxydovorans.The protonophor FCCP (carbonly-p-trifluormethoxyphenylhydrazon) inhibited both, formation of NAD(P)H and of ATP. In the absence of oxygen, a chemical potential imposed by base-acid transition resulted in the formation of NAD(P)H and ATP when electrogenic substrates (CO or H2) were present. This suggests proton motive force-driven NAD(P)H formation. The proton motive force was generated by oxidation of substrate, and not by ATP hydrolysis, as obvious from NAD(P)H formation during inhibition of ATP synthesis by oligomycin and N,N-dicyclohexylcarbodiimide.That the CO-born electrons are transferred via the ubiquinone 10-cytochrome b region to NADH dehydrogenase functioning in the reverse direction, was indicated by inhibition of NAD(P)H formation by HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide) and rotenone, and by resistance to antimycin A.We conclude that in P. carboxydovorans, growing with CO or H2, electrons and a proton motive force, generated by respiration, are required to drive an reverse electron transfer for the formation of reduced pyridine nucleotides.Abbreviations CODH
carbon monoxide dehydrogenase
- DCCD
N,N-dicyclohexylcarbodiimide
- FCCP
carbonyl-p-trifluormethoxyphenylhydrazon
- HQNO
2-n-heptyl-4-hydroxyquinoline-N-oxide
- pmf
proton motive force 相似文献
38.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline () of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex. 相似文献
39.
John A. Jacquez 《生物化学与生物物理学报:生物膜》1983,727(2):367-378
Depletion of energy stores of human red cells decreases the maximum transport capacity, , for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in . Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in . The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains. 相似文献
40.
Carel J. Van Oss 《Cell biochemistry and biophysics》1989,14(1):1-16
The energy vs distance balance of cell suspensions (in the presence and in the absence of extracellular biopolymer solutions)
is studied, not only in the light of the classical Derjaguin-Landau-Verwey-Over-beek (DLVO) theory (which considered just
the electrostatic (EL) and Lifshitz-van der Waals (LW) interactions), but also by taking electron-acceptor/electron-donor,
or Lewis acid-base (AB) and osmotic (OS) interactions into account. Since cell surfaces, as well as many biopolymers tend
to have strong monopolar electron-donor properties, they are able to engage in a strong mutual AB repulsion when immersed
in a polar liquid such as water. The effects of that repulsion have been observed earlier in the guise of hydration pressure.
The AB repulsion is, at close range, typically one or two orders of magnitude stronger than the EL repulsion, but its rate
of decay is much steeper. In most cases, AB interactions are quantitatively the dominant factor in cell stability (when repulsive)
and in “hydrophobic interactions” (when attractive). OS interactions exerted by extracellularly dissolved biopolymers are
weak, but their rate of decay is very gradual, so OS repulsions engendered by biopolymer solutions may be of importance in
certain long-range interactions. OS interactions exerted by biopolymers attached to cells or particles (e.g., by glycocalix
glycoproteins), are very short-ranged and usually are negligibly small in comparison with the other interaction forces, in
aqueous media. 相似文献