首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   4篇
  国内免费   5篇
  133篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1994年   3篇
  1992年   3篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
21.
A cell-free system from Andrographis paniculata tissue cultures catalysed the transesterification of administered cis, trans-farnesol-[1-3H2] with (glyceryl) oleate and palmitate present in the coconut water that forms part of the culture medium.  相似文献   
22.
It has been shown that the cultured cells of Nicotiana tabacum “Bright Yellow” are capable of transforming testosterone to Δ4-androstene-3, 17-dione, 5α-androstan-17β-ol-3-one, 5α-androstane-3β, 17β-diol, its dipalmitate and 3- and 17-monoglucosides, epiandrosterone, its palmitate and glucoside, testosterone glucoside. 5α-Androstane-3β, 17β-diol dipalmitate and 3- and 17-monoglucosides, epiandrosterone palmitate and glucoside, and testosterone glucoside have been found for the first time as metabolites of testosterone in plant systems. Δ4-Androstene-3,17-dione was converted to testosterone. 5α-Androstan-17β-ol-3-one, which has been recognized as an active form of testosterone in mammals, was also detected. It has also been demonstrated that [4-14C]testosterone is actively incorporated in these transformations.  相似文献   
23.
The corpus allatum (CA) of adult female Ceratitis capitata produces methyl palmitate (MP) in vitro, in addition to JHB3 and JH III. Biosynthesized MP migrates on TLC and co-elutes from RP-18 HPLC with synthetic MP. Its identity is verified herein by GCMS. MP production is up-regulated twofold by mevastatin, an inhibitor of mevalonic acid-dependent isoprene biosynthesis. Fosmidomycin, an inhibitor of mevalonic acid-independent isoprene synthesis in graminaceous plants, up-regulates MP synthesis by about fourfold. However, it does not depress JHB3 biosynthesis concurrently. This suggests that the initial enzyme(s) in the conversion of 1-deoxy-xylulose 5-phosphate to isoprene is presumably present in C. capitata, but is inhibited by fosmidomycin, and this inhibition diverts precursors to MP synthesis. Phytol, an acyclic diterpene, might be suppressing isoprene biosynthesis by CA, thereby resulting in a fourfold increase in the MP biosynthesis. Linolenic acid is an end-product and its presence in incubation media up-regulates MP biosynthesis by twofold, presumably due to the feedback diversion to biosynthesis of C16:0 and its methyl ester. Biosynthesis of MP is markedly depressed after mating, while otherwise maintained at significantly higher levels in virgin females. MP biosynthesis is significantly reduced in virgin females by direct axonal control but is less consistent after mating.  相似文献   
24.
《Developmental cell》2020,52(2):196-209.e9
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   
25.
Patients with type 2 diabetes (T2D) and/or insulin resistance (IR) have an increased risk for the development of heart failure (HF). Evidence indicates that this increased risk is linked to an altered cardiac substrate preference of the insulin resistant heart, which shifts from a balanced utilization of glucose and long-chain fatty acids (FAs) towards an almost complete reliance on FAs as main fuel source. This shift leads to a loss of endosomal proton pump activity and increased cardiac fat accumulation, which eventually triggers cardiac dysfunction. In this review, we describe the advantages and disadvantages of currently used in vitro models to study the underlying mechanism of IR-induced HF and provide insight into a human in vitro model: human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Using functional metabolic assays we demonstrate that, similar to rodent studies, hESC-CMs subjected to 16 h of high palmitate (HP) treatment develop the main features of IR, i.e., decreased insulin-stimulated glucose and FA uptake, as well as loss of endosomal acidification and insulin signaling. Taken together, these data propose that HP-treated hESC-CMs are a promising in vitro model of lipid overload-induced IR for further research into the underlying mechanism of cardiac IR and for identifying new pharmacological agents and therapeutic strategies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   
26.
Insulin and IGF-1 receptors contain covalently bound palmitic acid   总被引:2,自引:0,他引:2  
We have studied the biosynthesis of the insulin receptor in a human hepatoma cell line, HepG2. As previously reported, these cells synthesize a disulphide-bonded alpha 2 beta 2 tetrameric insulin receptor. Labelling of HepG2 cells with [3H]palmitate or [3H]myristate followed by immunoprecipitation with a polyclonal antireceptor antibody revealed the incorporation of palmitate, but not myristate, into the beta-subunit and alpha beta-precursor of the receptor in a hydroxylamine-sensitive linkage. The extracellular alpha-subunit was not labelled, demonstrating the specificity of incorporation. Acylation of the insulin receptor was an early event as judged by fatty acid incorporation into the alpha beta-precursor and prevention by protein synthesis inhibitors. Pulse-chase studies demonstrated the expected processing of the alpha beta-precursor to mature alpha- and beta-subunits, but no evidence for preferential turnover of the fatty acid moiety was found. The site of acylation appears to be in the transmembrane or cytoplasmic domain since proteolytic treatment of intact cells produced a truncated beta-subunit still containing label. Binding studies showed that HepG2 cells contain approximately half as many insulin-like growth factor-1 receptors as insulin receptors, raising the possibility that this receptor may also be acylated. Indeed, immunoprecipitation with the antiinsulin receptor serum of MDCK cells expressing IGF-1 receptors, but not insulin receptors, revealed bands corresponding to the alpha beta-precursor, alpha- and beta-subunits, of which the alpha beta-precursor and beta-subunits incorporated [3H]palmitate but the alpha-subunit did not.  相似文献   
27.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   
28.
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.  相似文献   
29.
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT–5, a membrane‐bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed‐specific promoter. The FAT‐5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1?9; expression of fat‐5 reduced the 16:0 content of the seed by two‐thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn‐1 position. Seeds from a plant line homozygous for FAT–5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.  相似文献   
30.
Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号