首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   12篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有96条查询结果,搜索用时 187 毫秒
61.
Resveratrol is a naturally occurring polyphenol known to affect energy metabolism and insulin sensitivity in mice and lipogenic gene expression in adipocytes. Here, we sought to get further insight into the impact of resveratrol on adipocyte biology by studying its effects on oxidative metabolism and the expression of the insulin resistance-related adipokines resistin and Retinol-Binding Protein 4 (RBP4) in mature adipocytes. Effects were assessed in 3T3-L1 adipocytes and in adipocytes derived from primary mouse embryonic fibroblasts (MEF). Besides reducing triacylglycerol content and the mRNA levels of lipogenic genes, resveratrol treatment resulted in both models in increased mRNA levels of carnitine palmitoyltransferase 1 (a rate-limiting enzyme in mitochondrial fatty acid oxidation), reduced mRNA levels of receptor interacting protein 140 (a suppressor of oxidative metabolism), and signs of enhanced flux through the fatty acid beta-oxidation pathway. In primary MEF-derived adipocytes, the treatment also increased mitochondrial DNA content and the mRNA levels of subunit II of cytochrome oxidase (a component of the mitochondrial respiratory chain) and of uncoupling protein 1. Expression of resistin and RBP4 was reduced in both adipocyte models following resveratrol treatment. The results indicate that resveratrol directly acts in mature white adipocytes to favor a remodeling toward increased oxidative capacity and reduced lipogenesis, while down-regulating two putative insulin resistance factors. These results constitute novel insights into resveratrol action in adipocytes that add to the potential of this food phytochemical and its synthetic analogues for the control of obesity and related metabolic disorders.  相似文献   
62.
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   
63.
The effects of supplementation of the maternal diet of quail with three natural sources of carotenoids (alfalfa nutrient concentrate (PX agrotrade mark), tomato powder and marigold extract) on the accumulation of retinol and retinyl esters in egg yolk and in the liver of the new hatchling and maternal were investigated. The present study showed that the vitamin A in quail egg yolk was present in 4 different forms, namely retinol (R 52-62%), retinyl linoleate (RL 9-11%), retinyl stearate (RS 4%), retinyl oleate (RO 11-15%) and retinyl palmitate (RP 13-22%). The retinyl ester profile of the liver of newly hatched quail (R 2-4%, RL 8-12%, RS 19-21%, RO 12-15%, RP 50-55%) differs from that of egg yolk but was similar to that of the liver of adult quail (R 1%, RL 5-6%, RS 21-28%, RO 9-12%, RP 54-63%). It has been shown that RO and RP concentrations in egg yolk and the liver of day old quail chick significantly increased as a result of carotenoid supplementation of the maternal diet.  相似文献   
64.
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.  相似文献   
65.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   
66.
This paper presents a simple reversed-phase high-performance liquid chromatographic method for the simultaneous determination of retinol, and α- and γ-tocopherols in human serum using a fluorescence detector. For chromatographic separation a binary gradient was used: phase A; acetonitrile–butanol (95:5); phase B; water, at a flow-rate of 1.5 ml/min. Serum retinol, and α- and γ-tocopherol levels were measured in patients with non-insulin-dependent diabetes mellitus. Small sample requirement, good reproducibility and sensitivity make this method useful for the determination of the serum levels of these compounds in patients with diabetes mellitus.  相似文献   
67.
68.
A comparative study has been made of the abilities of retinol and its derivatives to induce cell fusion and haemolysis of hen erythrocytes and to cause swelling of rat liver mitochondria. Retinol, retinaldehyde, α-retinoic acid, iso-13-retinol and to a lesser extent retinyl acetate were active in all three systems. Iso-13-retinoic acid was extremely membranolytic but did not produce stable fused cells. By contrast retinoic acid, its cyclopentyl derivative RO8-7699, and the long chain fatty acid esters of retinol, viz. the oleate, linoleate and palmitate esters, were neither fusogenic nor haemolytic, nor did they affect mitochondria.  相似文献   
69.
Retinoic acid (atRA) signaling is essential for regulating embryonic development, and atRA levels must be tightly controlled in order to prevent congenital abnormalities and fetal death which can result from both excessive and insufficient atRA signaling. Cellular enzymes synthesize atRA from Vitamin A, which is obtained from dietary sources. Embryos express multiple enzymes that are biochemically capable of catalyzing the initial step of Vitamin A oxidation, but the precise contribution of these enzymes to embryonic atRA synthesis remains unknown. Using Rdh10trex-mutant embryos, dietary supplementation of retinaldehyde, and retinol dehydrogenase (RDH) activity assays, we demonstrate that RDH10 is the primary RDH responsible for the first step of embryonic Vitamin A oxidation. Moreover, we show that this initial step of atRA synthesis occurs predominantly in a membrane-bound cellular compartment, which prevents inhibition by the cytosolic cellular retinol-binding protein (RBP1). These studies reveal that widely expressed cytosolic enzymes with RDH activity play a very limited role in embryonic atRA synthesis under normal dietary conditions. This provides a breakthrough in understanding the precise cellular mechanisms that regulate Vitamin A metabolism and the synthesis of the essential embryonic regulatory molecule atRA.  相似文献   
70.
Our understanding of the molecular mechanisms responsible for fat-soluble vitamin uptake and transport at the intestinal level has advanced considerably over the past decade. On one hand, it has long been considered that vitamin D and E as well as β-carotene (the main provitamin A carotenoid in human diet) were absorbed by a passive diffusion process, although this could not explain the broad inter-individual variability in the absorption efficiency of these molecules. On the other hand, it was assumed that preformed vitamin A (retinol) and vitamin K1 (phylloquinone) absorption occurred via energy-dependent processes, but the transporters involved have not yet been identified. The recent discovery of intestinal proteins able to facilitate vitamin E and carotenoid uptake and secretion by the enterocyte has spurred renewed interest in studying the fundamental mechanisms involved in the absorption of these micronutrients. The proteins identified so far are cholesterol transporters such as SR-BI (scavenger receptor class B type I), CD36 (cluster determinant 36), NPC1L1 (Niemann–Pick C1-like 1) or ABCA1 (ATP-Binding Cassette A1) displaying a broad substrate specificity, but it is likely that other membrane proteins are also involved. After overviewing the metabolism of fat-soluble vitamins and carotenoids in the human upper gastrointestinal lumen, we will focus on the putative or identified proteins participating in the intestinal uptake, intracellular transport and basolateral secretion of these fat-soluble vitamins and carotenoids, and outline the uncertainties that need to be explored in the future. Identifying the proteins involved in intestinal uptake and transport of fat-soluble vitamins and carotenoids across the enterocyte is of great importance, especially as some of them are already targets for the development of drugs able to slow cholesterol absorption. Indeed, these drugs may also interfere with lipid vitamin uptake. A better understanding of the molecular mechanisms involved in fat-soluble vitamin and carotenoid absorption is a priority to better optimize their bioavailability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号