首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7148篇
  免费   187篇
  国内免费   226篇
  7561篇
  2023年   58篇
  2022年   67篇
  2021年   71篇
  2020年   90篇
  2019年   125篇
  2018年   167篇
  2017年   79篇
  2016年   101篇
  2015年   118篇
  2014年   369篇
  2013年   544篇
  2012年   245篇
  2011年   343篇
  2010年   235篇
  2009年   302篇
  2008年   336篇
  2007年   344篇
  2006年   294篇
  2005年   294篇
  2004年   251篇
  2003年   237篇
  2002年   171篇
  2001年   130篇
  2000年   99篇
  1999年   153篇
  1998年   135篇
  1997年   114篇
  1996年   123篇
  1995年   113篇
  1994年   132篇
  1993年   93篇
  1992年   111篇
  1991年   98篇
  1990年   100篇
  1989年   110篇
  1988年   92篇
  1987年   95篇
  1986年   88篇
  1985年   107篇
  1984年   140篇
  1983年   87篇
  1982年   114篇
  1981年   91篇
  1980年   74篇
  1979年   74篇
  1978年   64篇
  1977年   52篇
  1976年   44篇
  1974年   23篇
  1973年   24篇
排序方式: 共有7561条查询结果,搜索用时 15 毫秒
51.
Summary A detailed comparative analysis of the Escherichia coli and Salmonella typhimurium hisIE and hisD gene products and the functionally equivalent, single, HIS4 gene product of Saccharomyces cerevisiae permitted several insights concerning the relationship between these genes. Our analysis supports the idea that HIS4 results from the fusion of hisIE and hisD. The comparison permitted a more precise definition of the functional domains of hisI/HIS4A and hisE/HIS4B as well as the two functional domains of hisD/HIS4C. The homologies between the bacterial and yeast sequences suggest a region of the hisD/HIS4C protein that may constitute one of the active centres. A large fragment at the amino terminal region of the yeast protein is missing from the bacterial hisIE gene product and is probably not needed for catalytic activity. Another region of non-homology in the yeast protein is probably a peptide bridge connecting the HIS4AB domain to HIS4C. Although the overall homology at the level of amino acid sequence is modest (about 38%) there is a striking similarity when the hydropathic patterns and predicted secondary structural configurations of these proteins are compared.  相似文献   
52.
Specific cell surface insulin binding to embryonic chick neural retina cells has been demonstrated in vivo. Kinetics of insulin binding as well as hormonal specificity were similar to those reported for other vertebrate cells and tissues, both neural and nonneural. When surface insulin binding to retinal cells was studied as a function of embryonic age, a developmental relationship was observed. Scatchard analysis revealed that the number of cell surface insulin receptors decreased approximately 75% between days 10 and 16 of embryonic development. Receptor affinities remained fairly constant for this period.  相似文献   
53.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   
54.
Glutamate dehydrogenase (GDH) activity was studied in 17 regions of six human brains. Duration and conditions of the postmortem period did not affect enzyme activity. Specific activity ranged between 103 and 377 nmoles/min/mg protein at 25 degrees C and it was 10-fold higher than that found in leukocytes. Apart from exclusively white matter regions (corpus callosum and centrum ovale), there was a moderate regional distribution (2.5-fold variation), with highest values in the inferior olive and hypothalamus, and lowest in the cerebellum and lenticular nucleus. With alpha-ketoglutarate (alpha-KG), NADH, or NH4+ as variable substrate, the apparent Km values in human brain were Km alpha-KG = 1.9 X 10(-3) M, KmNADH = 0.21 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M, and in leukocytes they were Km alpha-KG = 1.7 X 10(-3) M, KmNADH = 0.24 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M. The effects of cofactors, inhibitor, and pH were similar in brain and leukocyte GDH.  相似文献   
55.
Our previous studies using rodent/human somatic-cell hybrids suggested that the expression of human mitochondrial glycerol-3-phosphate dehydrogenase (GPDM) is dependent on the presence of human mitochondria. This has now been tested directly by analysis of GPDM activity in a series of nine hybrid-cell lines, four segregating human chromosomes and five losing rodent chromosomes (reverse segregants). The chromosome composition of the hybrids was deduced from analysis of biochemical markers and examination of G- and G11-banded metaphase spreads and the mitochondrial content was determined by Southern blot analysis, using cloned mouse and human mtDNA sequences as probes. We found that the mtDNA species present in these hybrids correlated exactly with the pattern of chromosome segregation such that the conventional hybrids contained rodent mtDNA and the reverse segregants human mtDNA. However, the pattern of GPDM expression was not directly correlated with the species of chromosomes or mitochondria present: all the hybrids showed strong rodem GPDM activity and two from each class of hybrid also showed human GPDM activity but the other hybrids were negative for human GPDM. We conclude that rodent GPDM readily integrates into human mitochondria, that the expression of rodent GPDM is not dependent on the presence of rodent mitochondria, and that GPDM is not coded by mtDNA. Human GPDM either is not capable of being inserted into the rodent mitochondrial membrane or is regulated in some way in the hybrid cells by an unidentified rodent factor.  相似文献   
56.
We have determined the complete amino acid sequence of a 20K Da COOH-terminal fragment of porcine NADPH-cytochrome P-450 reductase. The 20K Da fragment is probably produced by a proteolytic cleavage of the intact protein in porcine liver microsomes, and since the cleavage does not affect enzymatic activity, the fragment has been studied as a distinct domain. The sequence comprises 175 amino acids including three cysteine residues, one of which has been previously identified as protected by NADPH from S-carboxymethylation. The NADPH-protected cysteine lies in a stretch of 12 residues with partial homology to glutathione reductase, and is adjacent to a hydrophobic region containing a glycine-rich stretch homologous to other FAD-containing proteins. The predicted secondary structure over this entire region is beta-sheet/beta-turn/beta-sheet/alpha-helix/beta-sheet/beta-turn/alpha-h elix corresponding to hydrophobic residues 21-28/glycine-rich residues 29-33/residues 34-38/residues 39-54/residues 56-61/NADPH-protected cysteine residues 62-78/residues 71-82. It is possible that the 20K Da domain provided a significant portion of the sequence responsible for binding FAD and NADPH in the intact enzyme. This data provides a basis for further active site studies.  相似文献   
57.
Aldehyde dehydrogenase has been purified to homogeneity from mitochondria of potato tubers and pea epicotyls. Although the enzyme had a high affinity for glycolaldehyde it also had a high affinity for a number of other aliphatic and arylaldehydes. It is proposed that the codification glycolaldehyde dehydrogenase (EC 1.2.1.22) should be abandoned in favour of mitochondrial aldehyde dehydrogenase (EC 1.2.1.3). The purified enzyme showed esterase activity and had properties similar to those reported for the mammalian mitochondrial aldehyde dehydrogenase. Although the natural substrate(s) for the enzyme is not known, the kinetic properties of the enzyme are consistent with it playing a role in the oxidation of acetaldehyde, glycolaldehyde and indoleacetaldehyde.  相似文献   
58.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   
59.
The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m–2 under nitrogen and 50 W·m–2 under air, while NADP photoreduction was saturated at 240 W·m–2. Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.Abbreviations Fd ferredoxin - FBPase fructose-1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - LEM light effect mediator - NADP-MDH NADP-malate dehydrogenase - Td thioredoxin  相似文献   
60.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号