首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   9篇
  国内免费   2篇
  819篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2015年   13篇
  2014年   37篇
  2013年   46篇
  2012年   31篇
  2011年   34篇
  2010年   30篇
  2009年   30篇
  2008年   36篇
  2007年   43篇
  2006年   38篇
  2005年   22篇
  2004年   26篇
  2003年   24篇
  2002年   11篇
  2001年   3篇
  2000年   18篇
  1999年   9篇
  1998年   12篇
  1997年   7篇
  1996年   12篇
  1995年   15篇
  1994年   27篇
  1993年   17篇
  1992年   19篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   12篇
  1987年   14篇
  1986年   20篇
  1985年   19篇
  1984年   9篇
  1983年   14篇
  1982年   17篇
  1981年   18篇
  1980年   9篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1976年   5篇
  1975年   3篇
  1973年   3篇
  1971年   5篇
  1970年   7篇
排序方式: 共有819条查询结果,搜索用时 15 毫秒
81.
The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4–5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support  相似文献   
82.
One of the major roles of brain-derived neurotrophic factor (BDNF) is to promote the differentiation and support the survival of neurons in the central nervous system. The objective of the present study was to evaluate the effect of BDNF on the fate of adult rat hippocampus-derived neural stem cells (AHPCs) transplanted into the developing rat retina. Immunohistochemical analysis showed a significant increase in the ratio of grafted AHPCs stained for MAP2ab (P<0.05) and a marked decrease in the ratio of nestin-positive grafted cells in the slow-releasing BDNF group compared with the control group. The respective changes in the ratios of MAP5 and GFAP-positive grafted cells were comparable for the two groups. The results reported here suggest a potentially beneficial role for extended delivery of BDNF in the differentiation of grafted neural stem cells, which may lead to a novel modification of stem cell transplantation.  相似文献   
83.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   
84.
85.
The chick embryo is an excellent model for studying eye morphogenesis, retinal cell fate determination, and retinotectal projections due to its accessibility and the available molecular tools. Avian replication-competent retroviruses allow efficient infection of proliferating cells and stable integration of the viral genome, including up to 2.3kb of foreign cDNA, into the host chromosome. High-titer retroviruses are produced by transient transfection of avian DF-1 cells followed by centrifugation of the culture medium. Targeted infection of the optic vesicle, the lens vesicle, the retina and pigmented epithelium, the periocular mesenchyme, and the tectum can be performed at different developmental stages in ovo. In addition, retroviruses can be used to transduce genes of interest into various ocular tissue explants or cells in vitro. Virus-mediated gene expression can be detected within 12h of infection. Therefore, avian replication-competent retroviruses serve as powerful tools to misexpress wild-type and mutant gene products and to study molecular mechanisms underlying vertebrate visual system development.  相似文献   
86.
Primates are unique among eutherian mammals for possessing three types of retinal cone. Curiously, catarrhines, platyrrhines, and strepsirhines share this anatomy to different extents, and no hypothesis has hitherto accounted for this variability. Here we propose that the historical biogeography of figs and arborescent palms accounts for the global variation in primate color vision. Specifically, we suggest that primates invaded Paleogene forests characterized by figs and palms, the fruits of which played a keystone function. Primates not only relied on such resources, but also provided high-quality seed dispersal. In turn, figs and palms lost or simply did not evolve conspicuous coloration, as this conferred little advantage for attracting mammals. We suggest that the abundance and coloration of figs and palms offered a selective advantage to foraging groups with mixed capabilities for chromatic distinction. Climatic cooling at the end of the Eocene and into the Neogene resulted in widespread regional extinction or decimation of palms and (probably) figs. In regions where figs and palms became scarce, we suggest primates evolved routine trichromatic vision in order to exploit proteinaceous young leaves as a replacement resource. A survey of the hue and biogeography of extant figs and palms provides some empirical support. Where these resources are infrequent, primates are routinely trichromatic and consume young leaves during seasonal periods of fruit dearth. These results imply a link between the differential evolution of primate color vision and climatic changes during the Eocene-Oligocene transition.  相似文献   
87.
Guerra A  Urbina M  Lima L 《Amino acids》2000,19(3-4):687-703
Summary. Although there are a great number of studies concerning the uptake of taurine in several tissues, the regulation of taurine transport has not been studied in the retina after lesioning the optic nerve. In the present study, isolated retinal cells of the goldfish retina were used either immediatly after cell suspension or in culture. The high-affinity transport system of [3H]taurine in these cells was sodium-, temperature- and energy-dependent, and was inhibited by hypotaurine and β-alanine, but not by γ-aminobutyric acid. There was a decrease in the maximal velocity (Vmax) without modifications in the substrate affinity (Km) after optic axotomy. These changes were mantained for up to 15 days after the lesion. The results might be the summation of mechanisms for providing extracellular taurine to be taken up by other retinal cells or eye structures, or regulation by the substrate taurine, which increases after lesioning the optic nerve. The in vivo accumulation of [3H]taurine in the retina after intraocular injection of [3H]taurine was affected by crushing the optic nerve or by axotomy. A progressive retinal decrease in taurine transport was observed after crushing the optic nerve, starting at 7 hours after surgery on the nerve. The uptake of [3H]taurine by the tectum was compensated in the animals that were subjected to crushing of the optic nerve, since the concentration of [3H]taurine was only different from the control value 24 hours after the lesion, indicating an efficient transport by the remaining axons. On the contrary, the low levels of [3H]taurine in the tectum after axotomy might be an index of the non-axonal origin of taurine in the tectum. Axonal transport was illustrated by the differential presence of [3H]taurine in the intact or crushed optic nerve. The uptake of [3H]taurine into retinal cells in culture in the absence or in the presence of taurine might indicate the existence of an adaptive regulation of taurine transport in this tissue, however taurine transport probably differentially occurs in specific populations of retinal cells. The use of a purified preparation of cells might be useful for future studies on the modulation of taurine transport by taurine in the retina and its role during regeneration. Received June 11, 1999/Accepted August 31, 1999  相似文献   
88.
Summary Visual membranes of the crayfish eye either belong to the small, distally placed rhabdomere of retinula cell R8 or are part of the much more voluminous proximal rhabdom, made up of rhabdomeres belonging to cells R1–R7. Under various conditions of environmental stress (e.g., prolonged darkness, elevated temperature, bright light with and without a concomitant rise in temperature, flickering lights) the visual membranes of R8 prove far more resistant to structural damage than those of R1–R7. Membrane damage is known to occur when dormant lipoxygenases become activated, for example through heat. Since R8 is the only type of visual cell in the crayfish retina that does not contain grains of screening pigment, the view that screening-pigment granules could aggravate or even trigger membrane damage in times of stress is strengthened. Functionally, R8's strong resistance to physical damage when exposed to flickering lights points to a role of the distal rhabdom in the movement detection system of the crayfish eye.  相似文献   
89.
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells.  相似文献   
90.
Mature rod photoreceptor cells contain very small nuclei with tightly condensed heterochromatin. We observed that during mouse rod maturation, the nucleosomal repeat length increases from 190 bp at postnatal day 1 to 206 bp in the adult retina. At the same time, the total level of linker histone H1 increased reaching the ratio of 1.3 molecules of total H1 per nucleosome, mostly via a dramatic increase in H1c. Genetic elimination of the histone H1c gene is functionally compensated by other histone variants. However, retinas in H1c/H1e/H10 triple knock-outs have photoreceptors with bigger nuclei, decreased heterochromatin area, and notable morphological changes suggesting that the process of chromatin condensation and rod cell structural integrity are partly impaired. In triple knock-outs, nuclear chromatin exposed several epigenetic histone modification marks masked in the wild type chromatin. Dramatic changes in exposure of a repressive chromatin mark, H3K9me2, indicate that during development linker histone plays a role in establishing the facultative heterochromatin territory and architecture in the nucleus. During retina development, the H1c gene and its promoter acquired epigenetic patterns typical of rod-specific genes. Our data suggest that histone H1c gene expression is developmentally up-regulated to promote facultative heterochromatin in mature rod photoreceptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号