首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2733篇
  免费   177篇
  国内免费   126篇
  2023年   34篇
  2022年   60篇
  2021年   74篇
  2020年   68篇
  2019年   75篇
  2018年   67篇
  2017年   71篇
  2016年   64篇
  2015年   88篇
  2014年   108篇
  2013年   150篇
  2012年   96篇
  2011年   133篇
  2010年   76篇
  2009年   93篇
  2008年   110篇
  2007年   109篇
  2006年   100篇
  2005年   85篇
  2004年   101篇
  2003年   80篇
  2002年   54篇
  2001年   44篇
  2000年   37篇
  1999年   66篇
  1998年   38篇
  1997年   49篇
  1996年   51篇
  1995年   60篇
  1994年   58篇
  1993年   48篇
  1992年   52篇
  1991年   37篇
  1990年   34篇
  1989年   39篇
  1988年   34篇
  1987年   27篇
  1986年   44篇
  1985年   41篇
  1984年   47篇
  1983年   31篇
  1982年   43篇
  1981年   34篇
  1980年   48篇
  1979年   28篇
  1978年   24篇
  1977年   26篇
  1976年   21篇
  1973年   20篇
  1972年   20篇
排序方式: 共有3036条查询结果,搜索用时 15 毫秒
101.
Summary Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany  相似文献   
102.
Summary In the mouse, nerves were located throughout the trachea and extrapulmonary bronchi in both the smooth muscle and the connective tissue. However, no nerves were found within the epithelium. In the smooth muscle there were large numbers of nonmyelinated nerves. These were usually en passant elements but varicosities containing small mitochondria and vesicles were also seen; these axons sometimes appeared to be efferent to the muscle.Unilateral cervical vagotomy reduced the numbers of nerves in the muscle of the trachea and ipsilateral primary bronchus, suggesting that they were afferent. The intramuscular nerves were characterized in terms of their complement of cytoplasmic organelles; in particular nerves containing many mitochondria disappeared following vagotomy.Pretreatment of mice with 5-hydroxydopamine to accentuate the electron-opacity of catecholamine-containing granules resulted in 3.5% of the nerves within tracheal muscle showing such granules.The afferent nerves of the smooth muscle may be complex branching structures with many varicosities. The absence of epithelial nerves may be related to the absence of the cough reflex in the mouse.  相似文献   
103.
Summary Nerve fibres displaying neuropeptide-Y (NPY) immunoreactivity are abundantly distributed in the respiratory tract of cats, guinea-pigs, rats and mice. Fine beaded NPY fibres were seen in whole-mount spreads of the middle-ear mucosa. In the nasal mucosa and in the wall of the Eustachian tube NPY fibres were numerous around arteries and arterioles but sparse in the vicinity of veins; single fibres were found close to the acini of seromucous glands. In the tracheobronchial wall NPY fibres occurred in the proximity of blood vessels, in the subepithelial layer and in the smooth muscle. Surgical and chemical (6-hydroxydopamine treatment) sympathectomy resulted in disappearance of adrenergic and NPY-containing nerve fibres in the nasal mucosa. Sequential staining with antibodies against dopamine--hydroxylase (DBH) and NPY revealed that DBH and NPY occur in the same perivascular nerve fibres in the nasal mucosa. The distribution of NPY fibres in the respiratory tract suggests multiple functions of NPY, such as regulation of local blood flow, glandular secretion and smooth muscle activity.  相似文献   
104.
Summary The secretion of the subcommissural organ (SCO) of the rat was studied by means of immunocytochemistry at the electron-microscopic level with the use of (1) the polar embedding medium Lowicryl K4M at -30° C, (2) the protein A-gold technique, and (3) a rabbit antiserum against bovine Reissner's fiber (see Sterba et al. 1981).Two different substructures of the ependymal and the hypendymal SCO-cells display a positive immunocytochemical reaction: (1) sacs containing flocculent secretion, which originate from the granular endoplasmic reticulum, and (2) vacuoles filled with fine granular secretion, which are pinched off from the Golgi apparatus. The secretory material of the sacs and the vacuoles is discharged both (i) apically into the cerebrospinal fluid and (ii) basally into intercellular spaces of the SCO-hypendyma. The apically released secretion is condensed to a lamina-like formation, which more caudally assumes the form of Reissner's fiber. The route of the basally released secretion remains, however, vague. The periodically striated bodies, which were thought to be morphological mediators of the discharge of the secretion into the capillaries, are never labeled by gold particles.Supported by grants from the Ministry for Science and Technology of the German Democratic RepublicThe expert technical assistance of Mrs. B. Wolff, Mrs. S. Mehnert, Mrs. E. Siebert, Mrs. Ch. Schneider, and Mrs. I. Seifert is gratefully acknowledged  相似文献   
105.
Synopsis Oxygen uptake (VO2) during graded hypoxia, rate of hypoxia acclimation, breathing frequency (fR), breath volume (VS, R) and gill ventilation (VG) were measured in Hoplias malabaricus. Normoxia and hypoxia acclimated fish had similar and constant VO2 and VG in a range of water PO2 from 150 to 25 mmHg. Hypoxia acclimated fish showed significantly higher VO2 in severe hypoxia (PO2 <15 mmHg). Normoxia acclimated fish showed symptoms similar to hypoxic coma after 1 h of exposure to water PO2 of 10 mmHg whereas the same symptoms were observed only at PO2 of 5 mmHg for fish acclimated to hypoxia. Fish required 14 days to achieve full acclimation to hypoxia (PO2 ≥25 mmHg). Lowering of water PO2 from 150 to 25 mmHg resulted in normoxic fish showing a 3–2 fold increase in VG. The increase was the result of an elevation in VS, R rather than fR. Among normoxia acclimated specimens, small fish showed a higher VG per unit weight than the large ones in both normoxia (PO2 =150 mmHg) and hypoxia (PO2 = 15 mmHg). A decrease in the ventilatory requirement (VG/VO2) with increased body weight was recorded in hypoxia (PO2 = 15 mmHg).  相似文献   
106.
Summary The inner enamel epithelium (IEE) covers the labial tooth aspect as a one cell layer which, when cut sagittally, appears as a longitudinal cell column extending from the tooth origin toward the periphery. Following sudden tooth shortening, the IEE responds by an increased cell production which later declines below normal values. The perturbation affects all cell kinetic parameters; the progenitor compartment, which initially increases, diminishes in size toward end of the experiment. The cell cycle transition times, which initially decline, rise toward the end of the experiment. The mean normal daily cell production rate of 70 cell % (i.e. 70 cells are produced by 100 progenitors) increases to 111 cell % and then declines to a low of 51 cell %. The IEE response typifies the behavior of other cell renewal systems such as intestinal epithelium and epidermis.  相似文献   
107.
Summary The pineal organ of the blind, cave-dwelling fish, Typhlichthyes subterraneous, was examined with both light and electron microscopes. Like the eyes, the pineal in this troglobytic species was found to be regressed. Two cell types, photoreceptor and supportive cells, were described in the pineal epithelium. Although ganglion cells were not identified, small, unmyelinated nerve fibers were present. The photoreceptor cells had degenerated outer segments. Accordingly, it was suggested that the pineal in this species is not likely to function in photoreception. However, the presence of well developed Golgi bodies, clear and dense-cored vesicles, variable amounts of rough endoplasmic reticulum and glycogen particles indicated that both cell types are metabolically active and may play a role in secretion.  相似文献   
108.
109.
Summary The ventricular surface of the subfornical organ of the frog is made up of ependymal cells with numerous apical microvilli, occasional cytoplasmic protrusions and many vacuoles projecting into the lumen of the third ventricle. Between these cells dendrites of cerebrospinal fluid-contacting neurons reach the ventricle to terminate in bulbous enlargements. In addition, flask-shaped encephalo-chromaffin cells, containing granulated vesicles and aggregates of filaments in their cytoplasm, project into the cerebrospinal fluid. Surrounding the centrally located capillaries are enlarged dendrites and axons of heterogeneous morphology, some of which appear to originate within the subfornical organ, intermingled with dendrites and axons of normal structure. The glial cells in this region, especially the microglial cells, often contain large lipofuscin inclusions, suggestive of degeneration and subsequent phagocytosis of some of the enlarged dendrites and axons. The normally scarce neurosecretory peptidergic axons become more evident and form typical Herring bodies in stalk-transected animals. Neuronal perikarya of varying morphology are predominantly located peripheral to the region of enlarged dendrites and axons. Supraependymal macrophages are particularly numerous on the subfornical organ.Abbreviations used CSF cerebrospinal fluid - SEM scanning electron microscope, scanning electron microscopy - SFO subfornical organ - TEM transmission electron microscope, transmission electron microscopy Supported, in part, by NIH grant NB 07492The skillful technical assistance of J.G. Linner and the secretarial assistance of Ann Gerdom are gratefully acknowledged. The SEM studies were made possible through a grant from the Graduate College of Iowa State University and the use of the SEM facility in the Department of Botany  相似文献   
110.
Summary The topography of the neurosecretory system in the decapod eyestalk has not been precisely delineated with light microscopy. Cobalt iontophoresis and electron microscopy have proved useful in clarifying the microstructure of this system. The sinus gland (sg) of the crayfish eyestalk consists of aggregated axon terminals which end at or near the blood space, lontophoresing cobalt back through the cut base of the sinus glands reveals proximal cell bodies in the eyestalk only in the X organ (Xo) region. Electron microscopy demonstrates that axons from about 115 neurosecretory cell bodies in the Xo form the Xo-sg tract. Intermingled with these Xo somata are smaller non-neurosecretory cell bodies which do not send axons into the sinus gland. One of these exhibits catecholamine fluorescence. Backfilling also reveals a second group of fibres which run from the brain along the optic tract and into the sinus gland. These brain-sg fibres are smaller in diameter than Xo-sg axons and lack neurosecretory vesicles. From these fibres collaterals extend into the eyestalk neuropil, especially in the proximity of the visual elements. The possible function of these non-neurosecretory processes within the sinus gland is discussed.This work was supported by a National Research Council of Canada grant  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号