首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1476篇
  免费   92篇
  国内免费   52篇
  1620篇
  2024年   6篇
  2023年   21篇
  2022年   41篇
  2021年   42篇
  2020年   41篇
  2019年   46篇
  2018年   37篇
  2017年   34篇
  2016年   39篇
  2015年   38篇
  2014年   72篇
  2013年   86篇
  2012年   44篇
  2011年   65篇
  2010年   53篇
  2009年   52篇
  2008年   67篇
  2007年   57篇
  2006年   61篇
  2005年   50篇
  2004年   58篇
  2003年   55篇
  2002年   30篇
  2001年   24篇
  2000年   27篇
  1999年   39篇
  1998年   33篇
  1997年   32篇
  1996年   27篇
  1995年   28篇
  1994年   33篇
  1993年   23篇
  1992年   26篇
  1991年   26篇
  1990年   21篇
  1989年   23篇
  1988年   17篇
  1987年   7篇
  1986年   11篇
  1985年   6篇
  1984年   25篇
  1983年   21篇
  1982年   21篇
  1981年   14篇
  1980年   22篇
  1979年   2篇
  1978年   3篇
  1977年   7篇
  1973年   3篇
  1972年   2篇
排序方式: 共有1620条查询结果,搜索用时 0 毫秒
11.
Cytochrome c (cyto-c) added to isolated mitochondria promotes the oxidation of extra-mitochondrial NADH and the reduction of molecular oxygen associated to the generation of an electrochemical membrane potential available for ATP synthesis. The electron transport pathway activated by exogenous cyto-c molecules is completely distinct from the one catalyzed by the respiratory chain. Dextran sulfate (500 kDa), known to interact with porin (the voltage-dependent anion channel), other than to inhibit the release of ATP synthesized inside the mitochondria, greatly decreases the activity of exogenous NADH/cyto-c system of intact mitochondria but has no effect on the reconstituted system made of mitoplasts and external membrane preparations. The results obtained are consistent with the existence of specific contact sites containing cytochrome oxidase and porin, as components of the inner and the outer membrane respectively, involved in the oxidation of cytosolic NADH. The proposal is put forward that the bi-trans-membrane electron transport chain activated by cytosolic cyto-c becomes, in physio-pathological conditions: (i) functional in removing the excess of cytosolic NADH; (ii) essential for cell survival in the presence of an impairment of the first three respiratory complexes; and (iii) an additional source of energy at the beginning of apoptosis.  相似文献   
12.
Improved antimicrobial therapies against the classical spectrum of pathogenic bacteria which colonise the lungs of cystic fibrosis (CF) patients has resulted in improved life expectancy and quality of life. Bacterial species that are resistant to a broad range of antibiotics including Stenotrophomonas maltophilia and Alcaligenes xylosoxidans have now emerged as potential new pathogens to fill the niche. At present, it is unclear from clinical data whether these microbes are commensal or pathogenic. In this study we have quantified the inflammatory potential of lipopolysaccharide (LPS) from eight species of Gram-negative organisms which have been cultured with increasing frequency from CF patients. Inflammatory responses induced by LPS from whole human blood and a human-derived monocyte cell line (THP-1) were assessed. Enzyme-linked immunosorbent assays were used to detect interleukin-6, interleukin-8, and tumour necrosis factor alpha (TNF). A bioassay was also used to assess TNF activity. With the exception of S. maltophilia, LPS extracted from all of the bacteria tested upregulated, by varying degrees, expression of each of the proinflammatory cytokines assayed. This study represents the first comprehensive report of the endotoxic potential of a new wave of microbes which are associated with CF.  相似文献   
13.
CD8+ T cell responses are important for recognizing and resolving viral infections. To better understand the selection and hierarchy of virus-specific T cell responses, we compared the T cell receptor (TCR) clonotype in parent and hybrid strains of respiratory syncytial virus-infected mice. K(d)M2(82-90) (SYIGSINNI) in BALB/c and D(b)M(187-195) (NAITNAKII) in C57Bl/6 are both dominant epitopes in parent strains but assume a distinct hierarchy, with K(d)M2(82-90) dominant to D(b)M(187-195) in hybrid CB6F1/J mice. The dominant K(d)M2(82-90) response is relatively public and is restricted primarily to the highly prevalent Vβ13.2 in BALB/c and hybrid mice, whereas D(b)M(187-195) responses in C57BL/6 mice are relatively private and involve multiple Vβ subtypes, some of which are lost in hybrids. A significant frequency of TCR CDR3 sequences in the D(b)M(187-195) response have a distinct "(D/E)WG" motif formed by a limited number of recombination strategies. Modeling of the dominant epitope suggested a flat, featureless structure, but D(b)M(187-195) showed a distinctive structure formed by Lys(7). The data suggest that common recombination events in prevalent Vβ genes may provide a numerical advantage in the T cell response and that distinct epitope structures may impose more limited options for successful TCR selection. Defining how epitope structure is interpreted to inform T cell function will improve the design of future gene-based vaccines.  相似文献   
14.
Mitochondria from skeletal muscle, heart and liver of strain 129/ReJ-dy dystrophic mice and their littermate controls were characterized with respect to their respiratory and phosphorylating activities. Skeletal muscle mitochondria from dystrophic mice showed significantly lower state 3 respiratory rates than controls with both pyruvate + malate and succinate as substrates (P < 0.01). ADP/O and Ca2+/O ratios were found to be normal. A decreased rate of NADH oxidation (0.01 <P < 0.05) by sonicated mitochondrial suspensions from dystrophic mice was also seen. High respiratory rates with ascorbate + phenazine methosulfate as substrates indicated that cytochrome oxidase was not rate limiting in the oxidation of either pyruvate + malate or succinate. Skeletal muscle mitochondria from dystrophic mice showed no deficiency in any of the cytochromes or coenzyme Q. Mg2+-stimulated ATPase activity was higher in dystrophic muscle mitochondria than in controls, but basal and oligomycin-insensitive activities were virtually identical to those of controls. A significant reduction in the intramitochondrial NAD+ content (0.01 <P < 0.02) was seen in dystrophic skeletal muscle as compared to controls. Heart mitochondria from dystrophic mice showed similar, though less extensive abnormalities while liver mitochondria were essentially normal. We concluded from these results that skeletal muscle mitochondria from strain 129 dystrophic mice possess impairments in substrate utilization which may result from (1) an abnormality in the transfer of electrons on the substrate side of coenzyme Q in the case of succinate oxidation; (2) a defect on the path of electron flow from NADH to cytochrome c, and (3) a deficiency of NAD+ in the case of NAD+-linked substrates.  相似文献   
15.
16.
Abstract: The Pulsinelli-Brierley four-vessel occlusion model was used to study the consequences of hyperglycemic ischemia and reperfusion. Rats were subjected to either 30 min of normo- or hyperglycemic ischemia or 30 min of normo- or hyperglycemic ischemia followed by 60 min of reperfusion. In some animals, 2 mg/kg BN 50739, a platelet-activating factor receptor antagonist, was administered intraarterially either before or after the ischemic insult. The changes in mitochondrial membrane free fatty acid levels, phosphatidylcholine fatty acyl composition, and thiobarbituric acid-reactive material (TBAR) content plus the mitochondrial respiratory control ratio (RCR) were monitored. When the platelet-activating factor antagonist was present during normoglycemia, (a) the mitochondrial free fatty acid release both during and after ischemia was slowed, (b) reacylation of phosphatidylcholine following ischemia was promoted, and (c) TBAR accumulation during and following ischemia was decreased. The detrimental effects of hyperglycemia were muted when BN 50739 was present during ischemia. The RCR was preserved and phosphatidylcholine hydrolysis during ischemia was decreased. TBAR levels were consistently higher in hyperglycemic brain mitochondria both during and after ischemia. The RCR correlated directly with mitochondrial phosphatidylcholine polyunsaturated fatty acid content during ischemia and reperfusion. BN 50739 protection of mitochondrial membranes in brain may be influenced by tissue pH.  相似文献   
17.
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   
18.
Walsh  C.  McLelland  J. 《Cell and tissue research》1974,153(2):269-276
Summary An electron microscopic investigation of the extrapulmonary respiratory tract of embryos and chick of the domestic fowl (Gallus domesticus) has demonstrated for the first time in birds the presence here of a small number of epithelial cells characterised by an aminecontaining type of granule. These granular cells were scattered singly throughout the trachea, syrinx and primary bronchi and seemed more numerous in the caudal part of the airway. In favourable planes of section a small part of the cell was in contact with the luminal surface of the epithelium. The characteristic granular vesicles (approximate diameter 140 nm) appeared to be randomly distributed in the cytoplasm and there was no concentration of vesicles close to the plasma membrane. One of the cells was closely associated with an intraepithelial axon. By fluorescence microscopy, a small number of cells with a similar shape and distribution to the granular cells was observed after administration of 3,4-dihydroxyphenylalanine which may indicate the presence of an amine handlign mechanism in these cells. It is suggested that the granular cells belong to the APUD system of endocrine cells and that they may be modulated by the concentration of gas in the airways.  相似文献   
19.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non ‐replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible toTK2 deficiency. The precise patho‐physiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   
20.
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号