首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2306篇
  免费   166篇
  国内免费   132篇
  2024年   2篇
  2023年   35篇
  2022年   53篇
  2021年   66篇
  2020年   65篇
  2019年   75篇
  2018年   82篇
  2017年   79篇
  2016年   64篇
  2015年   87篇
  2014年   100篇
  2013年   146篇
  2012年   84篇
  2011年   115篇
  2010年   59篇
  2009年   132篇
  2008年   139篇
  2007年   136篇
  2006年   139篇
  2005年   110篇
  2004年   103篇
  2003年   76篇
  2002年   61篇
  2001年   47篇
  2000年   68篇
  1999年   50篇
  1998年   48篇
  1997年   47篇
  1996年   44篇
  1995年   27篇
  1994年   39篇
  1993年   22篇
  1992年   40篇
  1991年   22篇
  1990年   18篇
  1989年   29篇
  1988年   20篇
  1987年   18篇
  1986年   7篇
  1985年   14篇
  1984年   5篇
  1983年   2篇
  1982年   7篇
  1981年   7篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1958年   1篇
排序方式: 共有2604条查询结果,搜索用时 46 毫秒
71.
72.
The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.  相似文献   
73.
74.
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.  相似文献   
75.
76.
Intact maize plants prime for defensive action against herbivory in response to herbivore-induced plant volatiles (HIPVs) emitted from caterpillar-infested conspecific plants. The recent research showed that the primed defense in receiver plants that had been exposed to HIPVs was maintained for at least 5 d after exposure. Herbivory triggered the receiver plants to enhance the expression of a defense gene for trypsin inhibitor (TI). At the upstream sequence of a TI gene, non-methylated cytosine residues were observed in the genome of HIPV-exposed plants more frequently than in that of healthy plant volatile-exposed plants. These findings provide an innovative mechanism for the memory of HIPV-mediated habituation for plant defense. This mechanism and further innovations for priming of defenses via plant communications will contribute to the development of plant volatile-based pest management methods in agriculture and horticulture.  相似文献   
77.
78.
Based on color patterns and behavioral similarities, venomous coral snake Micrurus corallinus (Elapidae) may act as a model for two polymorphic species, Erythrolamprus aesculapii (Dipsadidae) and Micrurus decoratus (Elapidae). Plasticine replicas were used to investigate the aposematism of these coloration patterns and whether these species may be part of mimetic complexes in two Atlantic Forest localities in Southeast Brazil. Coral replicas were more avoided when set upon a white background, evincing that the pattern may act aposematically in contrast with light substrates. Birds attacked all four patterns equally during the mimicry experiments. Birds of prey, known to be effective in predating snakes, are quite abundant in the study areas, which may have led to this lack of avoidance. Accordingly, they predated more adult-sized replicas, which could be more dangerous. Interestingly, opossum avoided the Micrurus corallinus and Erythrolamprus aesculapii replicas that resembled the model. This suggests that opportunistic predators, as the opossum may be important selective agents in mimicry complexes.  相似文献   
79.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
80.
Bioinformatics tools have facilitated the reconstruction and analysis of cellular metabolism of various organisms based on information encoded in their genomes. Characterization of cellular metabolism is useful to understand the phenotypic capabilities of these organisms. It has been done quantitatively through the analysis of pathway operations. There are several in silico approaches for analyzing metabolic networks, including structural and stoichiometric analysis, metabolic flux analysis, metabolic control analysis, and several kinetic modeling based analyses. They can serve as a virtual laboratory to give insights into basic principles of cellular functions. This article summarizes the progress and advances in software and algorithm development for metabolic network analysis, along with their applications relevant to cellular physiology, and metabolic engineering with an emphasis on microbial strain optimization. Moreover, it provides a detailed comparative analysis of existing approaches under different categories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号