首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3805篇
  免费   276篇
  国内免费   431篇
  2023年   37篇
  2022年   72篇
  2021年   80篇
  2020年   89篇
  2019年   139篇
  2018年   130篇
  2017年   111篇
  2016年   102篇
  2015年   100篇
  2014年   177篇
  2013年   215篇
  2012年   139篇
  2011年   215篇
  2010年   153篇
  2009年   218篇
  2008年   221篇
  2007年   255篇
  2006年   203篇
  2005年   186篇
  2004年   145篇
  2003年   122篇
  2002年   133篇
  2001年   78篇
  2000年   97篇
  1999年   85篇
  1998年   67篇
  1997年   88篇
  1996年   84篇
  1995年   54篇
  1994年   50篇
  1993年   60篇
  1992年   71篇
  1991年   43篇
  1990年   38篇
  1989年   59篇
  1988年   36篇
  1987年   39篇
  1986年   37篇
  1985年   37篇
  1984年   44篇
  1983年   36篇
  1982年   31篇
  1981年   32篇
  1980年   24篇
  1979年   18篇
  1978年   14篇
  1977年   13篇
  1975年   7篇
  1974年   5篇
  1973年   8篇
排序方式: 共有4512条查询结果,搜索用时 296 毫秒
111.
Electron absorption and equilibrium of the Schiffs bases prepared between pyridoxal 5′-phosphate (PLP) and dodecylamine (DODA) or some other shorter chain amines have been studied in nonionic and cationic micellar solutions with various pH of the bulk solution. In the presence of the nonionic (Triton X-100) micelles the Schiffs bases formed between PLP and DODA were embedded into the micelles because the absorption occured at 335 nm, indicative of the nonpolar milieu. This absorption was constant at pH 5–10. At pH 3–5, the tautomeric form absorbing at 415 nm appeared. This resembles the titration of glycogen phosphorylate or that of Schiffs bases in methanol. Short chain amines absorbed at 415 nm, which is typical of Schiffs bases in aqueous solutions. Tryptophan also absorbed first at 415 nm but the absorption changed to 325 nm with a half-time of ~20 min. This was interpreted as being due to formation of the cyclic structure catalysed by micelles. The pH-dependent equilibrium constant of the reaction between PLP and DODA in Triton X-100 solution had a maximum at pH9, the value being 3500 M?1, about ten times greater than the value of ethylamine at the same pH. Spectral properties of PLP-DODA imines in the cationic micelles (cetyltrimethylammonium bromide) resembled those in the nonionic micelles, except that at low pH the absorption peak in the 415 nm region did not appear. The equilibrium constant of PLP-DODA had maximum at pH 9, the value being as high as 118000 M?1. Different properties of nonionic and cationic micelles and the design of micellar model systems of PLP enzymes are discussed.  相似文献   
112.
An ultracentrifugation procedure is described to concentrate protein solutions on the microliter scale. Protein solutions were centrifuged in U-shaped lengths of polyethylene tubing at 160 000 × g for 15 h and thereafter fractionated by cutting the tubing. The method can be performed in a conventional ultracentrifuge and needs no special equipment.  相似文献   
113.
P Trieu-Cuot  P Courvalin 《Gene》1983,23(3):331-341
We have cloned in Escherichia coli and sequenced a 1489-bp DNA fragment conferring resistance to kanamycin and originating from the streptococcal plasmid pJH1. The resistance gene was located by analysis of the initiation and termination codons in an open reading frame (ORF) of 792 bp. The deduced gene product, a 3'5'-aminoglycoside phosphotransferase of type III, has an Mr of 29,200. Comparison of its amino acid sequence with those of type I (Oka et al., 1981) and type II (Beck et al., 1982) 3' phosphotransferase, from transposable elements Tn903 and Tn5, respectively, indicated a statistically significant structural relationship between these enzymes from phylogenetically remote bacterial genera. The degree of homology observed indicate that phosphotransferase type III and type I genes have diverged from a common ancestor and that the phosphotransferase type II gene has emerged more recently from the type I evolutionary pathway.  相似文献   
114.
Cytotoxic actions of various prostaglandins were examined on L1210 mouse leukemia and several human leukemia cell lines, and prostaglandin D2 (PGD2) was found most active. PGD2 exerted a dose dependent inhibition of L1210 cell growth over 3.6 μM. At 14.3 μM growth was completely inhibited, and the number of viable cells remarkably decreased during culture. Microscopically the remaining cells showed degenerative changes with many vacuoles in their cytoplasm. The IC50 value of PGD2 on L1210 cell growth was calculated to be 6.9 μM (2.4 μg/ml), and at this concentration the DNA synthesis in 24 hr cultured cells was also decreased to a half of the level in the control cells. Such growth inhibition by PGD2 was also found at similar concentrations with several human leukemia cell lines such as NALL-1, RPMI-8226, RPMI-8402, and Sk-Ly-16. Among other prostaglandins tested, PGA2 showed a comparable, and PGE2 a less but significant growth inhibitory activity, while PGB2, PGF and PGI2 had no such effects on cell proliferation at 14.3 μM concentration. These results suggest a potential antineoplastic activity of PGD2.  相似文献   
115.
Continuous calorimetry has been applied to monitoring the heat evolution of Saccharomyces cerevisiae grown on d-glucose. The heat evolution, together with the energy and carbon balances, was used to evaluate the energetic efficiency of biomass, by-product biosynthesis, fermentative heat evolution as well as the maintenance energy of S. cerevisiae in ‘aerobic fermentation’ and ‘aerobic respiration’. In aerobic fermentation, under catabolite repression, the fraction of substrate energy converted to heat evolution, maintenance requirement, and biomass decreased with the increase of d-glucose concentration. The fraction of substrate energy converted to ethanol is the highest value and it could contribute up to 70% of the total substrate energy. In aerobic respiration, 43% of the total substrate energy was evolved as heat. While 50% of the total substrate energy was converted into biomass, only 7% of the total substrate energy was used for maintenance functions. The maintenance energy coefficient of S. cerevisiae was determined to be 0.427 MJ kg?1 cell h?1 (0.102 kcal g?1 cell h?1). For the first time, heat evolution together with yield-maintenance energy was used to predict biomass concentration during the fed-batch cultivation of S. cerevisiae.  相似文献   
116.
Summary A knowledge of the relationship between ion flow, both passive and active, ionic concentration, and membrane potential is essential to the understanding of cellular function. The problem has been analyzed on the basis of elementary physical and biophysical principles, providing a theoretical model of current flow and resting potential of cells, including those in epithelia. The model assumes that the permeability of the ion channets is not voltage dependent, but applies to gated channels when the gates are open. Two sources of nonlinearity of the current-voltage relationship are included in the analysis: ionic depletion and accumulation at the channels' mouths, and channel saturation at higher concentrations. The predictions of the model have been quantitative, validated by comparison with experiment, which has been limited to the only two cases in which adequate data was found. Application of the theory to the scala media of the mammalian cochlea has explained the source of its high positive potential and provided estimates of the Na+ and K+ permeabilities of the membranes of its marginel cess. This analysis provides a theoretically sound alternative to the widely used Goldman equation, the limited validity of which was emphasized by Goldman (D.E. Goldman, 1943,J. Gen. Physiol.27:37–60), as well as its derivatives, including the Goldman-Hodgkin-Katz equation for resting potentials.  相似文献   
117.
Summary One of the most important sets of model prebiotic experiments consists of reactions that synthesize complementary oligonucleotides from preformed templates under nonenzymatic conditions. Most of these experiments are conducted at 4°C using 0.01–0.1 M concentrations of activated nucleotide monomer and template (monomer equivalent). In an attempt to extend the conditions under which this type of reaction can occur, we have concentrated the reactants by freezing at –18°C, which is close to the NaCl–H2O eutectic at –21°C.The results from this set of experiments suggest that successful syntheses can occur with poly(C) concentrations as low at 5×10–4 M and 2MeImpG concentrations at 10–3 M. It was also anticipated that this mechanism might allow the previously unsuccessful poly(A)-directed synthesis of oligo(U)s to occur. However, no template effect was seen with the poly(A) and ImpU system. The failure of these conditions to allow template-directed synthesis of oligo(U)s supports the previously proposed idea that pyrimidines may not have been part of the earliest genetic material.Because of the low concentrations of monomer and template that would be expected from prebiotic syntheses, this lower temperature could be considered a more plausible geologic setting for template-directed synthesis than the standard reaction conditions.  相似文献   
118.
The effects on cytosolic Ca2+ concentration of 2-chloroadenosine and [L-Pro9]-substance P, a selective agonist of NK1 receptors, were investigated on astrocytes from embryonic mice in primary culture. Cells responded to [L-Pro9]-substance P with a transitory increase in cytosolic Ca2+ which was of shorter duration when external Ca2+ was removed. A transient response to 2-chloroadenosine alone occurred. When simultaneously applied, [L-Pro9]-substance P and 2-chloroadenosine evoked a prolonged elevation of cytosolic Ca2+ (up to 30 min). This phenomenon was dependent on the presence of extracellular Ca2+, but insensitive to dihydropyridines, La3+, and Co2+, excluding the implication of voltage-operated Ca2+ channels. Arachidonic acid also induced a sustained elevation of cytosolic Ca2+, but did not increase further the response evoked by [L-Pro9]-substance P and 2-chloroadenosine. The activation of protein kinase C by a diacylglycerol analogue mimicked the effect of [L-Pro9]-substance P in potentiating the 2-chloroadenosine-evoked response. Like 2-chloroadenosine, pinacidil, which hyperpolarizes the cells by opening K+ channels, prolonged the elevation of cytosolic Ca2+ concentration induced by [L-Pro9]-substance P. Conversely, depolarization with 50 mM KCl canceled the effects of either pinacidil or 2-chloroadenosine applied with [L-Pro9]-substance P. Pertussis toxin pretreatment suppressed all the effects induced by 2-chloroadenosine.  相似文献   
119.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   
120.
In production-scale, fed-batch fermentations, feed is often added to a single point at the top of the fermentor, which, combined with poor mixing, results in formation of a "feed zone" rich in nutrients. Frequent exposure of the culture to high concentrations of nutrients in the feed zone for sufficient duration can produce unexpected effects on its performance. The effect of the feed zone was evaluated by conducting aerobic fed-batch fermentations of Saccharomyces cerevisiae with both complex and defined media. The broth was recirculated between a recycle loop and a bench-scale fermentor, and feed was intermittently added into the recycle loop to simulate the circulation of cells through the feed zone. Experiments were carried out for a range of residence times in the recycle loop from 0.5 to 12 min. Biomass yields from the complex-media fermentations were not affected by exposure to high nutrient levels in the recycle loop for residence times up to 12 min. Ethanol consumption was reduced by as much as 50% for residence time in the loop up to 3 min. Very long exposure of yeast cells to excess nutrient levels (12 min) gave acetic acid formation. In a defined medium, the simulated feed zone effect increased biomass yield by up to 10%, but had no effect on ethanol levels. This study indicates that the feed zone effect on biomass yield in yeast fermentation, using complex substrates, will be negligible under fully aerobic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号