首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   10篇
  国内免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   1篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   9篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
71.
目的能力比对检验(Proficiency testing,PT)是室间质评的重要方案,通过参加美国病理家学会(College of American Pathologist,CAP)能力比对检验,监控实验室检验能力,确保检测结果的准确性、可重复性和可比性,促进实验室质量改进。方法中国医学科学院北京协和医学院北京协和医院检验科实验室于2009年参加CAP真菌检测能力验证活动。实验室收到标本后,按照常规真菌标本进行真菌学检查和免疫学测定,在规定的时间内将检测结果回报给CAP。CAP在同方法组内对检测结果进行评估,并提供所有参与实验室的结果统计报告。结果截至目前完成2009年3次共17份标本,回报结果正确率:F-A和F-C为100%,F-B为80%,结果评价均为满意。结论通过参加CAP能力比对检验,实现对检验结果准确性的持续性监测,提高真菌感染实验室诊断水平。  相似文献   
72.
Both water and nutrients are limiting in arid environments, and desert plants have adapted to these limitations through numerous developmental and physiological mechanisms. In the Mono Basin, California, USA, co-dominant Sarcobatus vermiculatus and Chrysothamnus nauseosus ssp. consimilis are differentially N and P limited. We hypothesized that low leaf N resorption contributes to N-limitation in Sarcobatus and that low leaf P resorption contributes to P-limitation in Chrysothamnus. As predicted, Sarcobatus resorbed proportionally 1.7-fold less N than Chrysothamnus, but reduced leaf P in senescent leaves to lower levels than Chrysothamnus (8.0–10.8-fold lower based on leaf area or mass, respectively), consistent with N, but not P limitations in Sarcobatus. Again, as predicted, Chrysothamnus resorbed proportionally 2.0-fold less P than Sarcobatus yet reduced leaf N in senescent leaves to lower levels than Sarcobatus (1.8–1.3-fold lower based on leaf area or mass, respectively), consistent with P, but not N limitations in Chrysothamnus. Leaf N and P pools were approximately 50% of aboveground pools in both species during the growing season, suggesting leaf resorption can contribute significantly to whole plant nutrient retention. This was consistent with changes in leaf N vs. P concentration as plants grew from seedlings to adults. Our results support the conclusion that N-limitation in Sarcobatus and P-limitation in Chrysothamnus are in part caused by physiological (or other) constraints that prevent more efficient resorption of N or P, respectively. For these species, differential nutrient resorption may be a key physiological component contributing to their coexistence in this saline, low resource habitat.  相似文献   
73.
Resorption of nitrogen (N) from senescing leaves is an important conservation mechanism that allows plants to use the same N repeatedly. Seasonal variations in leaf nitrogen of mature green and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied. Our objective was to compare N resorption of this Salix species that successfully occupy different habitats (shifting sandland, fixed sandland and lowland) with differences in soil N availability and moisture. Nitrogen concentrations in green and senescing leaves were higher in June and July. N resorption efficiency (percentage reduction of N between green and senescing leaves) was highest at shifting sandland, intermediate at fixed sandland, and lowest at lowland. There was a clear seasonal variation in N-resorption efficiency, with a lower value at the early growing season and a higher value during summer. N resorption efficiency was lower at the sites with higher soil N availability, suggesting that the efficiency of the resorption process is determined by the availability of the nutrient in the soil. Resorption from senescing leaves may play an important role in the nitrogen dynamics of sandy plants and reduce the nitrogen requirements for plant growth. We conclude that N resorption from senescing leaves in S. gordejevii was correlated to soil characteristics and higher N resorption on poor soils is a phenotypic adjustment by this species to maximize N-use at low availability.  相似文献   
74.
Patterns of faunal exploitation play a central role in debates concerning the behavioral modernity of Middle Stone Age (MSA) peoples. MSA foragers have been portrayed as less effective hunters than their Later Stone Age (LSA) successors on the basis of relative species abundances from ungulate assemblages in southern Africa. Specifically, MSA hunters are said to focus on docile eland while avoiding more aggressive prey, particularly buffalo and wild pigs. To evaluate these arguments and compare subsistence behavior, I present a quantitative examination of 51 MSA and 98 LSA ungulate assemblages from southern Africa to show that: (1) with respect to ungulate exploitation, MSA diet breadth may have exceeded LSA diet breadth, (2) ungulate assemblage evenness is equivalent in the MSA and LSA, (3) eland, buffalo, and wild pig are equally abundant in the MSA and LSA, and (4) large ungulate prey are more common in the MSA than in the LSA. With few exceptions, the broad patterns, which sample a range of geographic and environmental contexts, are supported by an environmentally controlled comparison of Middle and Later Stone Age faunas that accumulated under interglacial conditions along the southern African coastline. When interpreted within a foraging theory framework, these differences suggest that MSA hunters enjoyed increased meat yields due to elevated encounter rates with large prey. These results need not imply cognitive differences, but are consistent with an increase in human populations from the Middle to Later Stone Age, which resulted in diminished abundances of large ungulates.  相似文献   
75.
Using the 2000 US census data for immigrants of twenty language groups resided in metropolitan areas, we test the hypothesis that the rate of returns (in earnings) to English proficiency is not constant but varies with the language environment (as defined by group size, segregation, linguistic heterogeneity and inequality) in which immigrants are embedded. Results from our hierarchical model indicate that while an increase in the size and segregation of the language group diminishes returns to English proficiency, a rise in linguistic heterogeneity and inequality in the metropolitan area has the opposite effects. This study expands the scope of the previous studies by identifying conditions under which returns to English proficiency among immigrants are modified by a set of contextual factors often overlooked.  相似文献   
76.
Osteoclasts are involved in bone resorption, and its activation is considered one of the causes of osteoporosis. The pit assay is the principal method for evaluating osteoclast function by measuring hydroxyapatite resorption in vitro. However, the pit assay requires time and trained techniques, including the pit image analysis, and there is no other easy method for evaluating bone resorption. In this study, we developed a novel approach to quantify the bone resorption activity using a calcium phosphate (CaP) coating labeled with fluorescent polyanion. Fluoresceinamine-labeled chondroitin polysulfate or Hoechst 33258-labeled deoxyribonucleic acid was used for CaP labeling. When macrophage cell line RAW264 was cultured on the labeled CaP under the stimulation with the receptor activator of the NF-κB ligand (RANKL), RAW264 cells differentiated into osteoclastic cells and the fluorescence intensity of the culture supernatant and pit area increased in a time- and dose-dependent manner. Furthermore, drugs for osteoporosis treatment, such as pamidronate and β-estradiol, inhibited fluorescein release by the cells stimulated with RANKL. A positive correlation between the fluorescence intensity and pit area was observed (r = 0.917). These results indicated that this new method using fluorescent polyanion-labeled CaP is a standardized useful assay system for the evaluation of bone resorption activity.  相似文献   
77.
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate to uridine 5'-monophosphate during pyrimidine nucleotide biosynthesis. This enzyme is one of the most proficient known, exhibiting a rate enhancement of over 17 orders of magnitude over the uncatalyzed rate. An interesting question is whether the high proficiency of ODCase is associated with a highly optimized sequence of active site residues. This question was addressed by randomizing 24 residue positions in and around the active site of the E. coli ODCase (pyrF) by site-directed mutagenesis. The libraries of mutants were selected for function from a multicopy plasmid or by single-copy replacement at the pyrF locus on the E. coli chromosome. Stringent sequence requirements for function were found for the mutants expressed from the chromosomal pyrF locus. Six positions were not tolerant of substitutions and several others accepted very limited substitutions. In contrast, all positions could be substituted to some extent when the library mutants were expressed from a multicopy plasmid. For the conserved quartet of charged residues Lys44-Asp71-Lys73-Asp76, a cysteine substitution was found to provide function at positions 71 and 76. A lower pK(a) for both cysteine mutants supports a mechanism whereby the thiolate group of cysteine substitutes for the negatively charged aspartate side chain. The partial function mutants such as D71C and D76C exhibit reduced catalytic efficiency relative to wild type but nevertheless provide a rate enhancement of 15 orders of magnitude over the uncatalyzed rate indicating the catalytic proficiency of the enzyme is robust and tolerant of mutation.  相似文献   
78.
The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.  相似文献   
79.
Question: How do increases in soil nutrient and water availability alter the nutrient fluxes through the resorption and litter decomposition pathways and how do they affect litter nutrient pools in a low‐productive alpine tundra ecosystem? Location: An alpine lichen‐rich tundra on Mt. Malaya Khati‐para in the NW Caucasus, Russia (43°27’ N, 41°42’ E; altitude 2800 m a.s.l.). Methods: We conducted a 4‐year fertilisation (N, P, N+P, lime) and irrigation experiment, and analysed the responses of nutrient resorption from senescing leaves, leaf litter quality and decomposability of six pre‐dominant vascular plant species, total plant community litter production and litter (nutrient) accumulation. Results: Vascular plant litter [N] and [P] increased 1.5 and 10 fold in response to N and P additions, due to increased concentrations of the nutrients in fresh leaves and unchanged or reduced resorption efficiency. Litter decomposability was not affected by nutrient amendments. Fertilisation enhanced litter production (180%; N+P treatment) and litter accumulation (80%; N+P), owing to tremendously increased production and low decomposability of graminoids. Together with increased litter [N] and [P] this led to great increases in total litter nutrient pools. Conclusions: Due to increased production of graminoids, nutrients added to the alpine tundra soil were mostly immobilised in recalcitrant, nutrient‐rich litter. This suggests that changing species composition in low productive ecosystems may act as an internal buffer mechanism, which under increased soil nutrient availability prevents the community from rapidly acquiring features typical of a high productive ecosystem such as high decomposability and high nutrient availability.  相似文献   
80.

Objective:

We investigated acute bone turnover marker (BTM) responses to high-intensity resistance exercise with and without whole-body vibration (WBV) in young men (n=10).

Methods:

In this randomized crossover study, subjects performed 2 protocols separated by 2-week wash out periods: 1) resistance exercise only (RE) (3 sets 10 repetitions 80% 1RM for 9 exercises); and 2) WBV + RE (side-alternating vibration platform 5 intermittent, 1-minute bouts 20 Hz, 3.38 mm peak-to-peak displacement followed by RE). Fasting morning blood draws were taken before RE or WBV (PRE), immediately post RE (IP), and 30 minutes post RE (30P). WBV + RE also had a blood draw after the WBV exposure (POST WBV). Blood samples were analyzed for lactate, hematocrit, bone-specific alkaline phosphatase (Bone ALP, U/L), C-terminal telopeptide of type I collagen (CTX-I, ng/mL) and tartrate-resistant acid phosphatase 5b (TRAP5b, U/L).

Results:

Lactate, hematocrit, and Bone ALP significantly increased (p<0.05) IP for both protocols. Bone resorption markers did not change during RE only. CTX-I significantly decreased POST WBV. TRAP5b increased POST WBV, then significantly decreased at 30P.

Conclusions:

Generally, BTM changes to RE only were not significant when adjusted for hemoconcentration. The WBV stimulus altered bone resorption marker but not bone formation marker responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号