首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   13篇
  国内免费   3篇
  990篇
  2023年   5篇
  2022年   6篇
  2021年   9篇
  2020年   8篇
  2019年   11篇
  2018年   15篇
  2017年   3篇
  2016年   12篇
  2015年   53篇
  2014年   142篇
  2013年   118篇
  2012年   149篇
  2011年   111篇
  2010年   91篇
  2009年   32篇
  2008年   22篇
  2007年   38篇
  2006年   18篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   13篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有990条查询结果,搜索用时 0 毫秒
881.
APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA.  相似文献   
882.
用小麦群体辐射场,经自制生物场辐射仪的收集、放大,会聚于共振控内,对萌发玉米种子进行辐照,研究小麦群体辐射场对玉米的诱变效应。试验结果表明,小麦群体辐射场可诱导玉米植株形态产生变异,获得多茎多穗玉米突变类型,按青贮饲料指标测产,产量比对照组显著提高。  相似文献   
883.
Abstract: An in vivo study of intracerebral rat glioma using proton-localized NMR spectroscopy showed important modifications of the spectra in the tumor as compared with the contralateral brain. To carry out the assignment of the resonances of the glioma spectra, tumoral and normal rat brain tissues were studied in vivo, ex vivo, and in vitro by one-dimensional and two-dimensional proton spectroscopy. N -Acetylaspartate was found at an extremely low level in the glioma. The change of peak ratio total creatine/3.2 ppm peak was found to be due to a simultaneous decrease of the total creatine content and an increase of the 3.2 ppm peak. The 3.2 ppm resonance in the glioma spectra has been shown to originate from choline, phosphocholine, glycerophosphocholine, taurine, inositol, and phosphoethanolamine. The increase of the 3.2 ppm peak in the glioma was found to result from the increase of taurine and phosphoethanolamine contents. The peak in the 1.3 ppm region of the glioma spectra was due to both lactate and mobile fatty acids. Moreover, two-dimensional spectroscopy of excised tissues and extracts showed the presence of hypotaurine only in the tumor.  相似文献   
884.
885.
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.  相似文献   
886.
The interactions of three amphiphilic glycoligands derived from d-galacturonic acid (L1, L2 and L3) with copper (II) ions were investigated in aqueous solution and/or in aqueous-methanol media. The combination of potentiometry, UV-Vis spectrophotometry and Electron Paramagnetic Resonance (EPR) was used to determine the formation constants of the complexes and their relative structures in solution. The complexation sites were identified using electronic absorption and EPR spectroscopies. Copper complexes were obtained as square planar or square pyramidal mononuclear or dinuclear species. Solid compounds were synthesized and tested as catalysts in the autooxidation of catechols in methanol and in aqueous micellar media. Mononuclear species were found to be catalytically active in both media, whereas dinuclear ones do not show any significant catecholase activity.  相似文献   
887.
The ligand N,N′-bis(2-hydroxybenzyl)-2-ol-1,3-propanediamine (H3bbpnol) reacts with iron(III) perchlorate forming two dinuclear bis-μ-alkoxo complexes, a ‘cis-trans’ isomer (complex 1) previously reported and a ‘cis-cis’ isomer (complex 2) characterized in this work. The main differences found in complex 2 structure are, (a) the four phenolic oxygens are trans to the alkoxo bridges; (b) each ligand is shared by the two Fe(III) ions occupying two coordination positions at each center. The Fe(III) centers in the resulting centrosymmetric structure in complex 2 have a distorted-octahedral geometry with the equatorial plane occupied by the phenolic and alcoholic oxygen atoms and the apical positions are filled by the aminic nitrogen atoms. The resonance Raman (RR) spectra of these two isomeric complexes are somewhat different with the intensity of some low-frequency modes increasing in the less symmetric core. The electronic spectra of both complexes are similar, but the molar absorptivities are substantially increased in complex 2, indicating the presence of an electronic coupling between the phenolate moieties trans in relation to the alkoxo bridge, and that phenolates coordinated cis to the alkoxo bridge do not seem to contribute to LMCT oscillator strength. This is directly reflected in the Raman excitation profiles (REP) of the chromophore modes, with the vibrational modes of the ‘cis-cis’ isomer showing a greater intensification compared with the ‘cis-trans’ isomer.  相似文献   
888.
889.
Chemokine receptors are commonly post-translationally sulfated on tyrosine residues in their N-terminal regions, the initial site of binding to chemokine ligands. We have investigated the effect of tyrosine sulfation of the chemokine receptor CCR2 on its interactions with the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Inhibition of CCR2 sulfation, by growth of expressing cells in the presence of sodium chlorate, significantly reduced the potency for MCP-1 activation of CCR2. MCP-1 exists in equilibrium between monomeric and dimeric forms. The obligate monomeric mutant MCP-1(P8A) was similar to wild type MCP-1 in its ability to induce leukocyte recruitment in vivo, whereas the obligate dimeric mutant MCP-1(T10C) was less effective at inducing leukocyte recruitment in vivo. In two-dimensional NMR experiments, sulfated peptides derived from the N-terminal region of CCR2 bound to both the monomeric and dimeric forms of wild type MCP-1 and shifted the equilibrium to favor the monomeric form. Similarly, MCP-1(P8A) bound more tightly than MCP-1(T10C) to the CCR2-derived sulfopeptides. NMR chemical shift mapping using the MCP-1 mutants showed that the sulfated N-terminal region of CCR2 binds to the same region (N-loop and β3-strand) of both monomeric and dimeric MCP-1 but that binding to the dimeric form also influences the environment of chemokine N-terminal residues, which are involved in dimer formation. We conclude that interaction with the sulfated N terminus of CCR2 destabilizes the dimerization interface of inactive dimeric MCP-1, thus inducing dissociation to the active monomeric state.  相似文献   
890.
A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC50 value of 26 μm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC50 of 16 μm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a KD of 0.29 μm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and β-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号