首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33233篇
  免费   1498篇
  国内免费   1587篇
  2024年   32篇
  2023年   347篇
  2022年   453篇
  2021年   693篇
  2020年   698篇
  2019年   903篇
  2018年   786篇
  2017年   728篇
  2016年   830篇
  2015年   1103篇
  2014年   1827篇
  2013年   2751篇
  2012年   1441篇
  2011年   1453篇
  2010年   1254篇
  2009年   1435篇
  2008年   1504篇
  2007年   1518篇
  2006年   1426篇
  2005年   1343篇
  2004年   1206篇
  2003年   1164篇
  2002年   1053篇
  2001年   788篇
  2000年   784篇
  1999年   739篇
  1998年   725篇
  1997年   652篇
  1996年   584篇
  1995年   619篇
  1994年   602篇
  1993年   480篇
  1992年   494篇
  1991年   394篇
  1990年   391篇
  1989年   302篇
  1988年   354篇
  1987年   274篇
  1986年   238篇
  1985年   343篇
  1984年   400篇
  1983年   262篇
  1982年   295篇
  1981年   146篇
  1980年   126篇
  1979年   122篇
  1978年   74篇
  1977年   41篇
  1976年   42篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
131.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   
132.
Summary Two-dimensional gel electrophoresis, at high and low temperatures, and gel mobilities of circularly permuted DNA segments showed a large bending locus about 50 bp downstream from the right border of the 245 by oriC box, a minimal essential region of autonomous replication on the Escherichia coli chromosome. Bending was strongly enhanced by Dam methylation. In DNA from a Dam strain, the mobility anomaly arising from altered conformation was much reduced, but was raised to the original level by methylation in vivo or in vitro. Enhancement of the mobility anomaly was also observed by hybrid formation of the Dam strand with the Dam+ strand. Near the bending center, GATC, the target of Dam methylase, occurs seven times arranged essentially on the same face of the helix with 10.5 by per turn. We concluded that small bends at each Dam site added up to the large bending detectable by gel electrophoresis.  相似文献   
133.
Summary The transfer of the Agrobacterium T-DNA to plant cells involves the induction of the Ti plasmid virulence genes. This induction results in the generation of linear single-stranded (ss) copies of the T-DNA inside Agrobacterium and such molecules might be directly transferred to the plant cell. A central requirement of this ss transfer model is that the plant cell must generate a second strand and integrate the resulting double-stranded (ds) molecule into its genome. Here we report that incubating plant protoplasts with ss or ds DNA under conditions favouring DNA uptake results in transformation. The frequencies of transformation are similar and analysis of ss transformants suggests that the introduced DNA becomes double stranded and integrated. Analysis of transient expression from introduced ss DNA suggests that generation of the second strand is rapid and extrachromosomal.  相似文献   
134.
Summary The Bacillus subtilis cdd gene encoding cytidine/2-deoxycytidine deaminase has been located by transduction at approximately 225 degrees on the chromosome, and the gene order rpC-lys-cdd-aroD was established. The gene was isolated from a library of B. subtilis DNA cloned in D69 by complementation of an Escherichia coli cdd mutation. Minicell experiments revealed a molecular mass of 14000 dalton for the cytidine deaminase subunit encoded by the cloned DNA fragment. The molecular weight of the native enzyme was determined to be 58000, suggesting that it consists of four identical subunits. The nucleotide sequence of 1170 bp, including the cdd gene, was determined. An open reading frame encoding a polypeptide with a calculated molecular mass of 14800 dalton was deduced to be the coding region for cdd. The deduced amino acid composition of the 136-amino acid-long subunit shows that it contains six cysteine residues. A computer search in the GenBank DNA sequence library revealed that the 476 bp HindIII fragment containing the putative promoter region and the first ten codons of cdd is identical to the P43 promoter-containing fragment previously isolated by Wang and Doi (1984). They showed that the fragment contained overlapping promoters transcribed by B. subtilis 43 and 37 RNA polymerase holoenzymes during growth and stationary phase.Abbreviations SDS sodium dodecyl sulphate - Ap ampicillin resistance - Tetr tetracycline resistance - Kmr kanamycin resistance  相似文献   
135.
Summary The RAD18 gene of Saccharomyces cerevisiae is involved in mutagenic DNA repair. We describe its isolation from a yeast library introduced into the centromeric YCp50 vector, a low copy number plasmid. The insert was sublconed into YCp50 and into the multicopy YRp7 plasmid. RAD18 is not toxic when present in multiple copies but the UV survival response indicates an heterogeneity in the cell population, a fraction of it being more sensitive. A DNA segment, close to RAD18, is toxic on the multicopy plasmid and may correspond to the tRAN sup61 known to be tightly linked to RAD18. Chromosomal deletions of RAD18 were constructed. The gene is not essential and the deleted strains have the properties of single site mutants. Thus, RAD18 appears to be essentially involved in DNA repair metabolism.  相似文献   
136.
We have shown, in a preliminary report, that macrophages can induce strand breaks in the DNA of co-cultured tumor cells (Chong et al., 1988). The present study is designed to determine if oxygen-centered species generated by the cell-free enzyme-substrate combination of hypoxanthine and xanthine oxidase can induce similar lesions and to identify the specific mediator(s). We report that co-incubation of murine mammary tumor cell lines with hypoxanthine and xanthine oxidase leads to the induction of DNA-strand breaks as determined by fluorescence analysis of DNA unwinding (FADU) assay or alkaline elution techniques. This damage is preventable by catalase which removes hydrogen peroxide but no protection is provided by agents to remove or prevent the formation of superoxide anion (superoxide dismutase), or hydroxyl radical (mannitol or the iron chelator o-phenanthroline). Likewise, cyclooxygenase or lipoxygenase inhibitors of arachidonate metabolism (indomethacin, nordihydroguaiaretic acid, caffeic acid) or bromophenacyl bromide do not alter the degree of DNA scission. Treatment with higher doses of oxygen species leads to significant toxicity as determined by evaluation of cell growth potential or colony-forming ability. Again, toxicity is prevented only by the presence of catalase. Tumor cells are able to rejoin strand breaks at lower, less toxic doses. When comparing different tumor cell subpopulations at various stages of progression, i.e., metastatic vs. nonmetastatic, for sensitivity to hydrogen peroxide-induced strand breakage, we found that at lower concentrations (less than 5μM) metastatic populations are sensitive whereas nonmetastatic populations exhibit no significant breakage. At higher concentrations of hydrogen peroxide, all lines were sensitive, suggesting that a lower threshold of sensitivity may exist for more progressed tumour cell lines.  相似文献   
137.
Summary Chloroplast DNA (cpDNA) was purified from blue spruce (Picea pungens Engelm.) and white spruce [P. glauca (Moench) Voss], and was digested with several different restriction endonucleases. Restriction fragment length polymorphisms (RFLPs) were identified that differentiated the cpDNA of both species. Intraspecific conservation of the RFLPs that differentiated each species was confirmed by examining trees from across the natural range of each species. Ten F1 hybrids were examined, and the cpDNA from each showed the banding pattern of the paternal species. Cloned Petunia cpDNA containing part of the rbcL gene hybridized to polymorphic bands, while a cloned maize mtDNA probe of the coxII gene failed to hybridize to any band.  相似文献   
138.
Summary Certain physicochemical properties of rice mitochondrial DNA (mtDNA) were determined. Certain low-molecular-weight mtDNA bands were found in addition to the major mtDNA band. Rice mtDNA appeared in the electron microscope as a collection of linear molecules with heterogeneous length in the range of 1–156 kb. The major distribution area was 60–105 kb. A small fraction (less than 5%) of rice mtDNA was found in the form of a circular molecule. Some molecules had the appearance of being supercoiled. Replication fork structures were found in both circular and linear mtDNA molecules. In one rice species, Jin Nante, 15 different circular molecules were found. Rice mtDNA was digested with different restriction enzymes. The total molecular weight of rice mtDNA was calculated to be about 300 kb according to the data of restriction enzyme digestion and electron microscopy.  相似文献   
139.
Summary Mitochondrial and chloroplast DNA was isolated from fertile and cytoplasmic male sterile cultivars of cultivated onions. Restriction fragment length polymorphism led to the distinction between cytoplasms S and M. Mitochondrial DNA patterns from S cytoplasms appeared dentical and characterized mostly male sterile lines. An open-pollinated variety was found to bear this cytoplasm and thought to be the origin of S types. Mitochondrial DNA patterns from M cytoplasms were subdivided into four types, M1 and M2 corresponding to normal N cytoplasm, M3 and M4 probably corresponding to T cytoplasms. S and M cytoplasms were also distinguished by chloroplast DNA restriction patterns. Our results confirm previous genetic distinction between S, N and T cytoplasms.  相似文献   
140.
Summary HRS60.1, a monomer unit (184 bp) of a highly repeated nuclear DNA sequence of Nicotiana tabacum, has been cloned and sequenced. Following BamHI digestion of tobacco DNA, Southern hybridization with HRS60.1 revealed a ladder of hybridization bands corresponding to multiples of the basic monomer unit. If the tobacco DNA was digested with restriction endonucleases which have no target site in HRS60.1, the larger part of DNA homologous to HRS60.1 remained as uncleaved relic DNA. These results suggest a tandem arrangement of this DNA repeat unit. Four other clones of tobacco nuclear DNA cross-hybridized with HRS60.1, thus forming a HRS60-family. Sequencing their inserts has shown their strong mutual homology. HRS60-family comprised about 2% of the nuclear genome of N. tabacum. Computer comparisons with other tandem plant-repeated DNA sequences could not detect any other homologous sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号