首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   46篇
  国内免费   12篇
  2023年   5篇
  2022年   6篇
  2021年   14篇
  2020年   19篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   16篇
  2015年   20篇
  2014年   21篇
  2013年   40篇
  2012年   21篇
  2011年   25篇
  2010年   18篇
  2009年   31篇
  2008年   39篇
  2007年   38篇
  2006年   22篇
  2005年   29篇
  2004年   24篇
  2003年   29篇
  2002年   23篇
  2001年   20篇
  2000年   25篇
  1999年   30篇
  1998年   14篇
  1997年   21篇
  1996年   14篇
  1995年   24篇
  1994年   18篇
  1993年   15篇
  1992年   11篇
  1991年   14篇
  1990年   21篇
  1989年   13篇
  1988年   15篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   8篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1972年   3篇
排序方式: 共有842条查询结果,搜索用时 687 毫秒
771.
Medical Physics Department (Medical School, University of Thessaly) participated in a Greek National EMF research program (EDBM34) with the scope to measure and evaluate radiofrequency (RF) exposure (27–3000 MHz) in areas of sensitive land use. A thousand (1000) measurements were carried out at two “metropolitan locations” (Athens and Thessaloniki: 624 points) and several rest urban/rural locations (376 points). SRM 3006 spectrum analyzer manufactured by Narda Safety Test Solutions was used. The broadband mean electric field in metropolitan areas was 0.41 V/m, while in the rest of Greece was 0.36 V/m. In metropolitan areas, the predominant RF source was the TV and Radio FM signals (36.2% mean contribution to the total RF exposure level). In the rest areas, the predominant source was the systems of the meteorological and military/defensive service (31.1%). The mobile sector contributed 14.9% in metropolitan areas versus 12.2% in the rest of Greece. The predominant mobile source was 900 MHz in both cases (4.5% in metropolitan areas vs. 3.3% in the rest of Greece). The total exposure from all RF sources complied with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 safety guidelines [ICNIRP, 2020]. The maximum exposure level was 0.129% of the limit for the metropolitan areas vs. 0.110% for the rest of Greece. Nonremarkable differences between metropolitan areas' exposure and the rest of Greece. In most cases, new 5 G antennas will be added to the existing base stations. Thus, the total exposure may be increased, leading to higher safety distances. © 2023 Bioelectromagnetics Society.  相似文献   
772.
773.
774.
Thirty-three cephalometric variables and height have been measured on each of 630 individuals (316 male and 314 female) from 157 families. After age and sex differences were adjusted for each measurement, a rotated factor analysis was undertaken to account for the variation by a limited number of linear combinations of the adjusted measurements. It was found that most of the variation could be explained by nine independent factors. Finally, correlation coefficients were computed on twins, siblings and parent-offspring data for factor scores. The results suggest that each factor which is measured by a linear combination of a set of variables could result from the interaction of independent sets of genes with the environment.  相似文献   
775.
Summary Meiotic recombination was analyzed between two twelve-copy arrays of a gene amplification at theCUP1 locus ofSaccharomyces cerevisiae. Utilizing Southern analysis to identify spores with non-parental repeat arrays, we find that approximately 11% of a sample with 202 unselected tetrads possess at least one nonparental spore array. Both reciprocal and non-reciprocal changes are observed. The data suggest a model in which frequent mispairing among identical copies of the 2.0 kb repeat unit leads to the formation of unpaired loops containing integral numbers of repeat units. In this model, conversions involving the loops lead to non-reciprocal changes in arrays: about half are associated with reciprocal exchange, and net increases in repeat unit numbers occur about as frequently as net decreases. Thus, the known properties of gene conversion can account for all the segregations we observe.  相似文献   
776.
Mechanical loading of the spine has been shown to be an important risk factor for the development of low-back pain. Inertial motion capture (IMC) systems might allow measuring lumbar moments in realistic working conditions, and thus support evaluation of measures to reduce mechanical loading. As the number of sensors limits applicability, the objective of this study was to investigate the effect of the number of sensors on estimates of L5S1 moments.Hand forces, ground reaction forces (GRF) and full-body kinematics were measured using a gold standard (GS) laboratory setup. In the ambulatory setup, hand forces were estimated based on the force plates measured GRF and body kinematics that were measured using (subsets of) an IMC system. Using top-down inverse dynamics, L5S1 flexion/extension moments were calculated.RMSerrors (Nm) were lowest (16.6) with the full set of 17 sensors and increased to 20.5, 22 and 30.6, for 8, 6 and 4 sensors. Absolute errors in peak moments (Nm) ranged from 17.7 to 16.4, 16.9 and 49.3 Nm, for IMC setup’s with 17, 8, 6 and 4 sensors, respectively. When horizontal GRF were neglected for 6 sensors, RMSerrors and peak moment errors decreased from 22 to 17.3 and from 16.9 to 13 Nm, respectively.In conclusion, while reasonable moment estimates can be obtained with 6 sensors, omitting the forearm sensors led to unacceptable errors. Furthermore, vertical GRF information is sufficient to estimate L5S1 moments in lifting.  相似文献   
777.
778.
Nonlinear optical imaging techniques have been widely used to reveal biological structures for accurate diagnosis at the cellular as well as the tissue level. In the present study, polarization‐dependent second‐harmonic generation (PSHG) was used to determine collagen orientation in breast cancer biopsy tissues (grades 0, I, II and III). The obtained data were processed using fast Fourier transform (FFT) analysis, while second‐harmonic generation (SHG) anisotropy and the “ratio parameter” values were also calculated. Such measurements were shown to be able to distinguish collagen structure modifications in different cancer grades tested. The analysis presented herein suggests that PSHG imaging could provide a quantitative evaluation of the tumor state and the distinction of malignant from benign breast tissues. The obtained results also allowed the development of a biophysical model, which can explain the aforementioned differentiations and is in agreement with the simulations relating the SHG anisotropy values with the mechanical tension applied to the collagen during cancer progression. The current approach could be a step forward for the development of new, nondestructive, label free optical diagnostic tools for cancer reducing the need of recalls and unnecessary biopsies, while potentially improving cancer detection rates.  相似文献   
779.
The in-vivo elucidation of the molecular mechanisms underlying muscles dysfunction due to aging via non-invasive label free imaging techniques is an important issue with high biological significance. In this study, polarization-dependent second-harmonic generation (PSHG) was used to evaluate structural alterations in the striated muscles during Caenorhabditis elegans lifespan. Young and old wild-type animals were irradiated. The obtained results showed that it was not feasible to detect differences in the structure of myosin that could be correlated with the aging of the worms, via the implementation of the classical, widely used, cylindrical symmetry model and the calculation of the SHG anisotropy values. A trigonal symmetry model improved the extracted results; however, the best outcome was originated from the application of a general model. Myosin structural modifications were monitored via the estimation of the difference in spectral phases derived from discrete Fourier transform analysis. Age classification of the nematodes was achieved by employing both models, proving the usefulness of the usage of PSHG microscopy as a potential diagnostic tool for the investigation of muscle diseases.  相似文献   
780.
The orientation of a cross-bridge is widely used as a parameter in determining the state of muscle. The conventional measurements of orientation, such as that made by wide-field fluorescence microscopy, electron paramagnetic resonance (EPR) or X-ray diffraction or scattering, report the average orientation of 1012–109 myosin cross-bridges. Under conditions where all the cross-bridges are immobile and assume the same orientation, for example in normal skeletal muscle in rigor, it is possible to determine the average orientation from such global measurements. But in actively contracting muscle, where a parameter indicating orientation fluctuates in time, the measurements of the average value provide no information about cross-bridge kinetics. To avoid problems associated with averaging information from trillions of cross-bridges, it is necessary to decrease the number of observed cross-bridges to a mesoscopic value (i.e. the value affected by fluctuations around the average). In such mesoscopic regimes, the averaging of the signal is minimal and dynamic behavior can be examined in great detail. Examples of mesoscopic analysis on skeletal and cardiac muscle are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号