首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
  国内免费   3篇
  99篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   13篇
  2013年   12篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
41.
This study examined the role of the Gα(q) signal constituted by Gα(q) and Gα(11) (encoded by Gnα(q) and Gnα(11), respectively), a major intracellular pathway of parathyroid hormone (PTH), in the PTH osteoanabolic action by the gain- and loss-of-function analyses. Transgenic mice with osteoblast-specific overexpression of the constitutively active Gnα(q) gene under the control of 2.3-kb type I collagen α1 chain (Col1a1) promoter exhibited osteopenia with decreased bone formation parameters and did not respond to the daily PTH treatment. We then established osteoblast-specific Gnα(q) and Gnα(11) double-knock-out (cDKO) mice by crossing the 2.3-kb Col1a1 promoter-Cre recombinase transgenic mice and those with Gnα(q) gene flanked with loxP and global ablation of Gnα(11) (Col1a1-Cre(+/-);Gna(q)(fl/fl);Gna(11)(-/-)) and found that the cDKO and single knock-out littermates of Gnα(q) or Gnα(11) exhibited normal bone volume and turnover under physiological conditions. With a daily injection of PTH, however, the cDKO mice, but not the single knock-out mice, showed higher bone volume and turnover than the wild-type littermates. Cultures of primary osteoblasts derived from cDKO and wild-type littermates confirmed enhancement of the PTH osteoanabolic action by the Gα(q) signal deficiency in a cell-autonomous mechanism, in association with the membrane translocation of protein kinase Cδ. This enhancement was reproduced by overexpression of regulator of G protein signaling-2, a Gα(q) signal inhibitor, in osteoblastic MC3T3-E1 cells. Hence, the Gα(q) signal plays an inhibitory role in the PTH osteoanabolic action, suggesting that its suppression may lead to a novel treatment in combination with PTH against osteoporosis.  相似文献   
42.
Guanine nucleotide regulatory proteins (G-proteins) are central to normal hepatocyte function and are implicated in hepatic disease initiation and progression. Regulators of G-protein signaling (RGS) are critical to defining G-protein-dependent signal fidelity, yet the role of RGS proteins in the liver is poorly defined. The aims of this study were to determine RGS17 expression in normal and transformed hepatic tissue and cells, and address the function of RGS17 in hepatic tumorgenicity. RGS17 expression was determined in human and rat HCC tissue and cell lines. Molecular approaches were used to alter RGS17 expression in HCC cells, effects on cell function measured, and RGS17 association with specific Gα-subunits determined. Using these approaches RGS17 mRNA, but not protein, was detectable in human and rat HCC tissue and cells. Conversely, RGS17 mRNA was not detected in normal tissue, isolated hepatocytes, or non-tumorigenic hepatic cells. Subsequent studies using transfected cells demonstrated that RGS17 proteins were not post-translationally modified in HCC cells, and RGS17 expression is governed by protein degradation and not via miRNAs. Notwithstanding inherently low RGS17 protein levels, altering RGS17 expression profoundly affected HCC cell mitogenesis and migration. Analysis of RGS17-G-protein interaction demonstrated RGS17 associates with both Giα- and Gqα-subunits in HCC cells of human and rat origin. In conclusion, these data demonstrate that, despite difficulties in measuring endogenous RGS protein expression, RGS17 is differentially expressed in HCC and plays a central role in regulating transformed hepatocyte tumorgenicity.  相似文献   
43.
44.
A decade of research on the biochemical interaction between chelonine wasps and their lepidopteran hosts has yielded considerable data on the underlying basis for the developmental, immunological and reproductive effects that these parasites inflict upon their hosts. These egg-larval parasites induce their immunologically compromised host larvae to precociously initiate metamorphosis, followed by suppression of development of the precocious prepupa, in addition to castration of the host. The results from numerous laboratories have shown that the parasite egg that is normally injected by the adult female into the host along with venom, polydnavirus and calyx fluid proteins need not hatch or even be present for the host to exhibit each of these alterations. In addition to these aspects the parasite larva, when present, itself releases hormones and proteins into the hemolymph of the host. A review of the data amassed to date leads inexorably to the conclusion that it is the chelonine wasp that is the biochemically dominant partner. Thus, after 10 years of research, it still appears that in chelonine-lepidopteran parasite-host systems, the parasite is in control of specific points of the biochemistry and development of its host.  相似文献   
45.
46.
在细菌生长过程中,细胞壁起到维持细胞形状和完整性,抵抗内部膨胀压的作用。细胞壁的合成、分裂、再生、循环再利用等与细菌自身生长繁殖和应对环境压力息息相关。目前,细胞壁生长机理,细菌如何调控细胞壁生长及如何与其他细胞过程相协调的机制尚未研究清楚。细胞壁调控机制的解析对了解细菌细胞壁功能、确定药物的作用方式和发展新一代的治疗方法至关重要。对细菌调控细胞壁生长机制的国外研究进展进行了概述,重点阐述了支架蛋白、转录因子、非编码小RNA及蛋白相互作用调控细胞壁的合成、细胞分裂、压力响应的机制,总结了细胞壁调控机制在抗菌药物研发中的应用,并对未来的研究方向进行了展望。  相似文献   
47.
Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser422. SGK1[Ser(P)422] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser241. Then PDK1[Ser(P)241] phosphorylates SGK1[Ser(P)422] at Thr256 to generate fully activated SGK1[Ser422, Thr(P)256]. SGK1[Ser(P)422,Thr(P)256] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.  相似文献   
48.
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.  相似文献   
49.
sRNA(非编码小RNA)通过碱基配对的方式与靶mRNA结合,抑制或激活转录过程、调节蛋白质的表达,以核酸的形式发挥其生物学功能。随着RNA深度测序(RNAseq)技术、生物信息学预测以及实验分析手段的日渐发展和完善,数以百计的sRNA被发现并得到验证。作为转录后调控因子,sRNA因在诸多生理过程中起到了关键的调节作用而得到了广泛的关注。以革兰氏阳性菌为切入点,总结了近年来sRNA的筛选、鉴定和功能研究等方面取得的进展,梳理分析了sRNA调控与毒力因子、群体感应、铁代谢和双组分系统等之间的内在联系,并展望了sRNA未来的研究方向。  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号