首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   10篇
  国内免费   8篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   9篇
  2020年   4篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   5篇
  2015年   18篇
  2014年   45篇
  2013年   48篇
  2012年   54篇
  2011年   74篇
  2010年   38篇
  2009年   35篇
  2008年   40篇
  2007年   36篇
  2006年   27篇
  2005年   44篇
  2004年   37篇
  2003年   36篇
  2002年   16篇
  2001年   6篇
  2000年   5篇
  1999年   11篇
  1998年   12篇
  1997年   6篇
  1996年   13篇
  1995年   14篇
  1994年   10篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   11篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   10篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有787条查询结果,搜索用时 250 毫秒
81.
Mammalian sperm-borne oocyte activating factor (SOAF) induces oocyte activation from a compartment that engages the oocyte cytoplasm, but it is not known how. A SOAF-containing extract (SE) was solubilized from the submembrane perinuclear matrix, a domain that enters the egg. SE initiated activation sufficient for full development. Microinjection coupled to tandem mass spectrometry enabled functional correlation profiling of fractionated SE without a priori assumptions about its chemical nature. Phospholipase C-zeta (PLCzeta) correlated absolutely with activating ability. Immunoblotting confirmed this and showed that the perinuclear matrix is the major site of 72-kDa PLCzeta. Oocyte activation was efficiently induced by 1.25 fg of sperm PLCzeta, corresponding to a fraction of one sperm equivalent (approximately 0.03). Immunofluorescence microscopy localized sperm head PLCzeta to a post-acrosomal region that becomes rapidly exposed to the ooplasm following gamete fusion. This multifaceted approach suggests a mechanism by which PLCzeta originates from an oocyte-penetrating assembly--the sperm perinuclear matrix--to induce mammalian oocyte activation at fertilization.  相似文献   
82.
Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-κB. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.  相似文献   
83.
The small regulator SipA, interacts with the ATP-binding domain of non-bleaching sensor histidine kinase (NblS), the most conserved histidine kinase in cyanobacteria. NblS regulates photosynthesis and acclimation to a variety of environmental conditions. We show here that SipA is a highly stable protein in a wide pH range, with a thermal denaturation midpoint of 345 K. Circular dichroism and 1D 1H NMR spectroscopies, as well as modelling, suggest that SipA is a β-II class protein, with short strands followed by turns and long random-coil polypeptide patches, matching the SH3 fold. The experimentally determined m-value and the heat capacity change upon thermal unfolding (ΔCp) closely agreed with the corresponding theoretical values predicted from the structural model, further supporting its accuracy.  相似文献   
84.
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.  相似文献   
85.
86.
The initial recognition and binding of macromolecular substrates by factor VIIa (FVIIa) in complex with tissue factor has been shown to be mediated by areas distinct from the active site (so-called exosites). The present aim was to shed light on whether the N-terminal tail of the protease domain of FVIIa influences factor X (FX) binding, and whether the zymogen-like conformation of free FVIIa has a decreased affinity for FX compared to the active conformation. Two derivatives of FVIIa, one (FFR-FVIIa) with a stably buried N-terminus representing the active conformation of FVIIa and one (V154G-FVIIa) with a fully exposed N-terminus representing the zymogen-like conformation, were used as inhibitors of FVIIa-catalyzed FX activation. Their inhibitory capacities were very similar, with K(i) values not significantly different from the K(m) for FX. This indicates that the conformational state of the N-terminus does not affect FX binding or, alternatively, that the activation domain including the N-terminal insertion site is easily shifted to the stable conformation ensuing FX docking to the zymogen-like conformation. The net outcome is that FX binding to the zymogen-like form of FVIIa does not appear to be impaired.  相似文献   
87.
A particle inflow gun (PIG) was constructed and tested for its utility to transform Paramecium using tungsten or gold as the DNA carrier particle. In the first set of experiments we transformed Paramecium with a plasmid containing the neomycin-resistance gene, obtaining a transformation efficiency of 0.31+/-0.14% (mean+/-SD) for tungsten particles and 1.30+/-0.29% for gold particles. Plasmid DNA precipitated upon tungsten was shown to be stable for transformation purposes for up to 1 h prior to use and had no detectable effects on transformation efficiency. In addition, we demonstrated that at high frequency (71+/-20%) a Paramecium mutant strain could be phenotypically rescued by co-transformation with a second plasmid containing the selectable neomycin-resistance gene. The PIG coupled with tungsten particles as the carrier offers a low-cost alternative for biolistic transformation of Paramecium.  相似文献   
88.
Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated.  相似文献   
89.
Cytoglobin (Cygb) is a recently discovered cytoplasmic heme-binding globin. Although multiple hemeproteins have been reported to function as nitrite reductases in mammalian cells, it is unknown whether Cygb can also reduce nitrite to nitric oxide (NO). The mechanism, magnitude, and quantitative importance of Cygb-mediated nitrite reduction in tissues have not been reported. To investigate this pathway and its quantitative importance, EPR spectroscopy, spectrophotometric measurements, and chemiluminescence NO analyzer studies were performed. Under anaerobic conditions, mixing nitrite with ferrous-Cygb triggered NO formation that was trapped and detected using EPR spin trapping. Spectrophotometric studies revealed that nitrite binding to ferrous-Cygb is followed by formation of ferric-Cygb and NO. The kinetics and magnitude of Cygb-mediated NO formation were characterized. It was observed that Cygb-mediated NO generation increased linearly with the increase of nitrite concentration under anaerobic conditions. This Cygb-mediated NO production greatly increased with acidosis and near-anoxia as occur in ischemic conditions. With the addition of nitrite, soluble guanylyl cyclase activation was significantly higher in normal smooth muscle cells compared with Cygb knocked down cells with Cygb accounting for ∼40% of the activation in control cells and ∼60% in cells subjected to hypoxia for 48 h. Overall, these studies show that Cygb-mediated nitrite reduction can play an important role in NO generation and soluble guanylyl cyclase activation under hypoxic conditions, with this process regulated by pH, oxygen tension, nitrite concentration, and the redox state of the cells.  相似文献   
90.
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号