首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6915篇
  免费   768篇
  国内免费   631篇
  8314篇
  2024年   47篇
  2023年   244篇
  2022年   309篇
  2021年   457篇
  2020年   517篇
  2019年   662篇
  2018年   430篇
  2017年   251篇
  2016年   298篇
  2015年   285篇
  2014年   419篇
  2013年   500篇
  2012年   298篇
  2011年   347篇
  2010年   243篇
  2009年   284篇
  2008年   291篇
  2007年   296篇
  2006年   240篇
  2005年   260篇
  2004年   208篇
  2003年   190篇
  2002年   161篇
  2001年   90篇
  2000年   81篇
  1999年   83篇
  1998年   73篇
  1997年   62篇
  1996年   61篇
  1995年   58篇
  1994年   53篇
  1993年   52篇
  1992年   45篇
  1991年   32篇
  1990年   34篇
  1989年   31篇
  1988年   29篇
  1987年   27篇
  1986年   28篇
  1985年   32篇
  1984年   41篇
  1983年   22篇
  1982年   28篇
  1981年   22篇
  1980年   25篇
  1979年   9篇
  1978年   14篇
  1977年   9篇
  1976年   10篇
  1975年   8篇
排序方式: 共有8314条查询结果,搜索用时 15 毫秒
71.
力复霉素前体甲基丙二酰CoA合成途径的研究   总被引:5,自引:1,他引:4  
力复霉素合成的碳前体之一(2R)—甲基丙二酰CoA至少可以有三条酶学合成途径。三条途径中的关键酶分别为甲基丙二酰CoA转羧基酶、丙二酰CoA羧化酶、甲基丙二酰CoA变位酶和甲基丙二酰CoA消旋酶。通过比较各个酶活性的时间进程和力复霉素合成时间的相关性,以及各个酶的底物亲合力,对它们在地中海拟无枝酸菌(Amycolatopsis mediterranei)甲基丙二酰CoA合成中的贡献作了排序,发现甲基丙二酰CoA变位酶途径是主要负责酶系。但是各个途径的贡献排序并不是固定不变的,能受到环境因素的调控,丙酸盐的加入将抑制甲基丙二酰CoA变位酶活力,而使得甲基丙二酰CoA转羧基酶成为主要酶系。甲基丙二酰CoA合成途径的多样性有助于细胞对环境变化的灵活反应。此外,对各个酶的调控特性也进行了研究。  相似文献   
72.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   
73.
Superficial cells of the oral mucosal epithelium in the carp and the cytoskeleton of the epithelial cells are examined by scanning and transmission electron microscopy. Microridges are formed on the surface of the epithelium. Epithelial cells contain two types of vesicles: mucous secretory vesicles and coated vesicles. Most of the mucous vesicles are situated in the center of the cell near the Golgi apparatus. In freeze-fracture replicas, intramembranous particles are abundant in the membranes of the secretory vesicles but rare in the apical plasma membrane. Coated vesicles are situated in the apical and subapical cytoplasm. A great number of thick filaments, considered to be keratin filaments, run randomly throughout the cell to form a meshwork. Thick filaments, which are sparse in the central cytoplasm, are connected to the membranes of the secretory vesicles and other membranous organelles. A layer of closely packed thin filaments, considered to be actin filaments, is found just beneath the apical plasma membrane. Microtubules also occur in the apical cytoplasm and run almost parallel to the cell surface. Both kinds of vesicles are connected to the thin and thick filaments. Their functional significance in the regulation of membrane at the free surface is discussed.  相似文献   
74.
We have examined the distribution and extent of phosphorylation of the tight junction-associated protein ZO-1 in the epithelial MDCK cell line, and in three cell types that do not form tight junctions: S180 (sarcoma) cells, S180 cells transfected with E-cadherin (S180L), and primary cultures of astrocytes. In shortterm calcium chelation experiments on MDCK cells, removal of extracellular calcium caused cells to pull apart. However, ZO-1 remained concentrated at the plasma membrane and no change in ZO-1 phosphorylation was observed. Maintenance of MDCK cells in low calcium medium, conditions where no tight junctions are found, resulted in altered ZO-1 distribution and lower total phosphorylation of the protein. In S180 cells, ZO-1 was diffusely distributed along the entire cell surface, with concentration of the antigen in motile regions of the cell. Cell-cell contact was not a prerequisite for ZO-1 localization at the plasma membrane in this cell type, and the phosphate content of ZO-1 was found to be lower in S180 cells relative to MDCK cells. Expression of Ecadherin in S180L cells did not alter either the distribution or phosphorylation of ZO-1. In contrast to S180 cells, ZO-1 in primary cultures of astrocytes was concentrated at sites of cell-cell contact, and the phosphorylation state was the same as that in control MDCK cells. Comparison of one-dimensional proteolytic digests of 32P-labeled ZO-1 revealed the phosphorylation of two peptides in control MDCK cells that was absent in both MDCK cells grown in low calcium and in S180 cells.We would like to thank Cheryl Richards for her help with the cell culture and immunohistochemistry; David Begg, Gary Firestone, Vik Maraj, Manijeh Pasdar and Colin Rasmussen for helpful discussions; Jaclyn Peebles and Greg Morrison for help with graphics and photography; and Grace Martin and Bob Campenot for rat tail collagen. We are grateful to all the members of our laboratories for their friendship, advice and support. This work was supported by an Establishment Award to B.R.S. from the Alberta Heritage Foundation for Medical Research and grants to B.R.S. from the Kidney Foundation of Canada and the Medical Research Council of Canada. A.H. is funded by a Studentship from the AHFMR. K.L.S. was supported by a grant from the National Institutes of Health (DK-42799) to Gary L. Firestone. B.R.S. is a Medical Research Council of Canada and AHFMR Scholar.  相似文献   
75.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   
76.
We have investigated the use of the tetracycline-dependent gene expression system to regenerate and propagate tobacco plants transformed with a gene whose product — when highly expressed — interferes with regeneration and/or further reproduction. Plants transformed with the Agrobacterium rhizogenes rolB gene under the control of the tetracycline-dependent expression system were phenotypically indistinguishable from wild type owing to efficient repression of the promoter. Induction of the rolB gene with tetracycline led to high-level expression of the rolB mRNA, which resulted in extremely stunted plants with necrotic and wrinkled leaves that did not develop a floral meristem. Upon cessation of tetracycline treatment healthy shoots developed even from severely affected meristems. Data on the dose response of the rolB phenotype as a function of tetracycline concentration demonstrate that the tetracycline-dependent gene expression system can be used to modulate the manifestation of a particular phenotype.  相似文献   
77.
An anatomical investigation of the leaves and twigs of Pterostemonaceae (Engl.), a monogeneric family of two species, has been made. The following anatomical characters in the leaf are of particular interest: glandular hairs, hydathodes on the marginal dentations and secretory substances in the glands and palisade cells. Characters of interest in the twig xylem include: vessel lumina of very small tangential diameter and with simple perforation plates; fibriform vessels with scalariform plates having one to six bars and also plates with perforations in irregular patterns.  相似文献   
78.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
79.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   
80.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号