首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   11篇
  国内免费   7篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   5篇
  2014年   8篇
  2013年   36篇
  2012年   3篇
  2011年   12篇
  2010年   7篇
  2009年   13篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   18篇
  2003年   9篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1996年   6篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
51.
Fatty acylation is a widespread form of protein modification that occurs on specific intracellular and secreted proteins. Beyond increasing hydrophobicity and the affinity of the modified protein for lipid bilayers, covalent attachment of a fatty acid exerts effects on protein localization, inter- and intramolecular interactions and signal transduction. As such, research into protein fatty acylation has been embraced by an extensive community of biologists. This special issue highlights advances at the forefront of the field, by focusing on two families of enzymes that catalyse post-translational protein fatty acylation, zDHHC palmitoyl acyltransferases and membrane-bound O-acyl transferases, and signalling pathways regulated by their fatty acylated protein substrates. The collected contributions catalogue the tremendous progress that has been made in enzyme and substrate identification. In addition, articles in this special issue provide insights into the pivotal functions of fatty acylated proteins in immune cell, insulin and EGF receptor-mediated signalling pathways. As selective inhibitors of protein fatty acyltransferases are generated, the future holds great promise for therapeutic targeting of fatty acyltransferases that play key roles in human disease.  相似文献   
52.
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.  相似文献   
53.
54.
Chromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe–Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines. The inhibition of ALK was evaluated and compound 19 in particular showed good activity against both the wild type and crizotinib-resistant L1196M mutant in vitro and in ALK-transfected BaF3 cells.  相似文献   
55.
梁姗  刘欢 《天然产物研究与开发》2019,(8):1392-1396,1460
为探究水杨酸作为酰化剂对胭脂萝卜天竺葵素的稳定性和抗氧化活性的影响,以保留率为指标,分析光、温度、金属离子、pH及氧化剂对酰化天竺葵素稳定性的影响,探究酰化天竺葵素对羟自由基、DPPH自由基和ABTS自由基的清除能力。结果表明:酰化天竺葵素对光、温度、Al3+、pH的稳定性显著提高,对Fe2+、Mg2+和Zn2+以及氧化剂H2O2的稳定性无显著差影响。酰化天竺葵素对羟自由基、DPPH自由基和ABTS自由基的清除能力与未酰化天竺葵素无显著差异。以上结果表明采用水杨酸酰化胭脂萝卜天竺葵素不影响其抗氧化活性,还能提高其对光照、温度、pH及铝离子的稳定性。  相似文献   
56.
Enzymatic acylation of rutin and esculin with aromatic, aliphatic and aryl-aliphatic acids using Candida antarctica lipase in tert amyl alcohol as solvent was investigated under low water content. Whatever the acyl donor used, the conversion yields and initial rates for esculin were higher than for rutin. For a given flavonoid, the performance of these reactions depended on the acyl donor structures. For aliphatic acids, conversion yields and initial rates of both flavonoids were respectively in the ranges of 68-90% and of 9.5×10-2-72×10-2 mmol l-1 h-1. For aromatic acids, the reaction occurred only with the aryl subgroup (cinnamic, hydrocinnamic, 3,4-dihydroxyhydrocinnamic and 4-hydroxyphenyl acetic acids) and was drastically influenced by the presence of side chain and substitution patterns of the aromatic ring. Except for hydrocinnamic acid (75%, 23.4×10-2 mmol l-1 h-1), with these acids the conversion yields and initial rates were lower and in the range of 10-45% and of 0.7×10-2 to 12.1×10-2 mmol l-1 h-1. Unsaturation of the side chain of the hydrocinnamic acid decreased the esculin conversion rate from 75 to 13% and initial rate from 23.4 to 1.76×10-2 mmol l-1 h-1. The presence of hydroxyl or nitro-groups on the aromatic ring of the aryl aliphatic acid also reduced conversion yields and initial rates. Even without a spacer, the non-phenolic ring acid (quinic acid) was reactive and lead to conversion yields of about 20 and 23% respectively for rutin and esculin.  相似文献   
57.
A putative 7-dimethylallyl tryptophan synthase (DMATS) gene from a fungal Neosartorya sp. was cloned and overexpressed as a soluble His6-fusion protein in Escherichia coli. The enzyme was found to catalyze the prenylation of l-tryptophan at the C7 position of the indole moiety in the presence of dimethylallyl diphosphate; thus, it functions as a 7-DMATS. In this study, we describe the biochemical characterization of 7-DMATS from Neosartorya sp., referred to as 7-DMATSNeo, and the structural basis of the regioselective prenylation of l-tryptophan at the C7 position by comparison of the three-dimensional structural models of 7-DMATSNeo with FgaPT2 (4-DMATS) from Aspergillus fumigatus.  相似文献   
58.
59.
The application of several immobilized lipases has been explored in the enantioselective esterification of (R,S)‐2‐methylbutyric acid, an insect pheromone precursor. With the use of Candida antarctica B, using hexane as solvent, (R)‐pentyl 2‐methylbutyrate was prepared in 2 h with c 40%, eep 90%, and E = 35, while Thermomyces lanuginosus leads to c 18%, eep 91%, and E = 26. The (S)‐enantiomer was obtained by the use of Candida rugosa or Rhizopus oryzae (2‐h reaction, c 34% and 35%, eep 75 and 49%, and E = 10 and 4, respectively). Under optimal conditions, the effect of the solvent, the molar ratio, and the nucleophile were evaluated.  相似文献   
60.
Lipase-catalyzed n-acylations of β-amino alcohols such as ethanolamine and l-serine were investigated. To prepare n-acyl derivatives by taking advantage of the acyl migration, we first carried out a screening of suitable enzymes for the desired reaction. As a result, we found a higher activity for n-acylation with Lipase L. This lipase had higher hydrolytic activity for the o-acyl compound but not the n-acyl compound. The observation shows that n-acylation results from the esterification and successive acyl migration into the amino group. Using Lipase L, we then investigated the n-acylation of ethanolamine or l-serine with fatty acids as acyl donors. The reaction parameters for the n-acylation were clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号