首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4453篇
  免费   285篇
  国内免费   544篇
  5282篇
  2024年   11篇
  2023年   129篇
  2022年   121篇
  2021年   166篇
  2020年   181篇
  2019年   154篇
  2018年   146篇
  2017年   167篇
  2016年   155篇
  2015年   160篇
  2014年   215篇
  2013年   356篇
  2012年   149篇
  2011年   195篇
  2010年   154篇
  2009年   225篇
  2008年   248篇
  2007年   222篇
  2006年   202篇
  2005年   195篇
  2004年   154篇
  2003年   156篇
  2002年   118篇
  2001年   90篇
  2000年   91篇
  1999年   104篇
  1998年   87篇
  1997年   83篇
  1996年   71篇
  1995年   86篇
  1994年   62篇
  1993年   59篇
  1992年   59篇
  1991年   41篇
  1990年   57篇
  1989年   34篇
  1988年   35篇
  1987年   33篇
  1986年   41篇
  1985年   44篇
  1984年   53篇
  1983年   38篇
  1982年   43篇
  1981年   23篇
  1980年   21篇
  1979年   16篇
  1978年   5篇
  1977年   8篇
  1976年   8篇
  1974年   5篇
排序方式: 共有5282条查询结果,搜索用时 0 毫秒
91.
《Free radical research》2013,47(1):479-488
Washed or growing E. coli cells are killed by epinephrine, norepinephrine or dopamine in the presence of non lethal concentrations of Cu(II). Killing is enhanced by anoxia and by sublethal Concentrations of H2O1. The rate of killing is proportional to the rate of catecholamine oxidation. The copper epinephrine complex binds to E. coli cells, induces membrane damage and depletion of the cellular ATP pool. The cells may be partially protected by SOD or catalase but not by OH radical scavengers. Addition of H2O2 to cells which were sensitized by preincubation with the epinephrine-copper complex, causes rapid killing and DNA degradation. Sensitized cells are not protected by BSA.  相似文献   
92.
Life within the soil is vital for maintaining life on Earth due to the numerous ecosystem services that it provides. However, there is evidence that pressures on the soil biota are increasing which may undermine some of these ecosystem services. Current levels of belowground biodiversity are relatively poorly known, and so no benchmark exists by which to measure possible future losses of biodiversity. Furthermore, the relative risk that each type of anthropogenic pressures places on the soil biota remains unclear. Potential threats to soil biodiversity were calculated through the use of a composite score produced from data collected from 20 international experts using the budget allocation methodology. This allowed relative weightings to be given to each of the identified pressures for which data were available in the European Soil Data Centre (ESDC). A total of seven different indicators were used for calculating the composite scores. These data were applied through a model using ArcGIS to produce a spatial analysis of composite pressures on soil biodiversity at the European scale. The model highlights the variation in the composite result of the potential threats to soil biodiversity. A sensitivity analysis demonstrated that the intensity of land exploitation, both in terms of agriculture and use intensity, as well as in terms of land‐use dynamics, were the main factors applying pressure on soil biodiversity. It is important to note that the model should not be viewed as an estimate of the current level of soil biodiversity in Europe, but as an estimate of pressures that are currently being exerted. The results obtained should be seen as a starting point for further investigation on this relatively unknown issue and demonstrate the utility of this type of model which may be applied to other regions and scales.  相似文献   
93.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double‐membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)‐related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy‐independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER‐associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy‐independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.  相似文献   
94.
《MABS-AUSTIN》2013,5(6):1551-1559
Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression.  相似文献   
95.
96.
《Autophagy》2013,9(12):2239-2250
Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.  相似文献   
97.
《Autophagy》2013,9(12):2099-2108
Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.  相似文献   
98.
Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6 h after induction of mutant uracil-N-glycosylase and by 12 h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144 h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and “foaming” of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.  相似文献   
99.
通过测定钢渣的化学组成分析得出其组分特征,进一步通过在有降解碱剂HPMA参与的重(轻)度盐碱土壤及钢渣中栽种不同植物种子(玉米、茄子、水稻和长春花),观察植物的长势,探究钢渣是否可以用于土壤改良。结果发现钢渣的化学成分与土壤基本相同,但部分成分如CaO、Fe2O3、MgO、MnO2等显著高于土壤,而另外一些组分TiO2、K2O、Na2O、P2O5在钢渣中未检测出来。对比重(轻)度盐碱土壤,钢渣与HPMA共同作用时,玉米、茄子、水稻和长春花等发芽率及生长速率明显提高;与常用的蛭石、珍珠岩改良剂对比实验中,不同植物存在类似的发芽率和生长速率,说明钢渣可以作为温室土壤结构改良剂;与钢渣产地丰富的树皮土资源配比形成复方改良剂,发现其具有类似花土(泥炭土)的生长速率和发芽率。初步研究表明,钢渣可以用于盐碱地改良,而且对于设施农业的土壤结构改良具有功效,与当地树皮土资源结合,具有形成复方土壤改良剂的潜力。  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号