首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   95篇
  国内免费   37篇
  994篇
  2024年   3篇
  2023年   19篇
  2022年   20篇
  2021年   30篇
  2020年   40篇
  2019年   28篇
  2018年   33篇
  2017年   37篇
  2016年   32篇
  2015年   30篇
  2014年   39篇
  2013年   50篇
  2012年   30篇
  2011年   41篇
  2010年   34篇
  2009年   55篇
  2008年   49篇
  2007年   63篇
  2006年   47篇
  2005年   45篇
  2004年   44篇
  2003年   36篇
  2002年   27篇
  2001年   28篇
  2000年   16篇
  1999年   11篇
  1998年   15篇
  1997年   12篇
  1996年   3篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1982年   7篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1972年   1篇
排序方式: 共有994条查询结果,搜索用时 0 毫秒
161.
Ageing is intrinsically complex, being driven by multiple causal mechanisms. Each mechanism tends to be partially supported by data indicating that it has a role in the overall cellular and molecular pathways underlying the ageing process. However, the magnitude of this role is usually modest. The systems biology approach combines (i) data-driven modelling, often using the large volumes of data generated by functional genomics technologies, and (ii) hypothesis-driven experimental studies to investigate causal pathways and identify their parameter values in an unusually quantitative manner, which enables the contributions of individual mechanisms and their interactions to be better understood, and allows for the design of experiments explicitly to test the complex predictions arising from such models. A clear example of the success of the systems biology approach in unravelling the complexity of ageing can be seen in recent studies on cell replicative senescence, revealing interactions between mitochondrial dysfunction, telomere erosion and DNA damage. An important challenge also exists in connecting the network of (random) damage-driven proximate mechanisms of ageing with the higher level (genetically specified) signalling pathways that influence longevity. This connection is informed by actions of natural selection on the determinants of ageing and longevity.  相似文献   
162.
163.
Although evolutionary theory predicts an association between the evolution of elaborate ornamentation and speciation, empirical evidence for links between speciation and ornament evolution has been mixed. In birds, the evolution of increasingly complex and colorful plumage may promote speciation by introducing prezygotic mating barriers. However, overall changes in color complexity, including both increases and decreases, may also promote speciation by altering the sexual signals that mediate reproductive choices. Here, we examine the relationship between complex plumage and speciation rates in the largest family of songbirds, the tanagers (Thraupidae). First, we test whether species with more complex plumage coloration are associated with higher speciation rates and find no correlation. We then test whether rates of male or female plumage color complexity evolution are correlated with speciation rates. We find that elevated rates of plumage complexity evolution are associated with higher speciation rates, regardless of sex and whether species are evolving more complex or less complex ornamentation. These results extend to whole-plumage color complexity and regions important in signaling (crown and throat) but not nonsignaling regions (back and wingtip). Our results suggest that the extent of change in plumage traits, rather than overall values of plumage complexity, may play a role in speciation.  相似文献   
164.
We have determined the nucleotide sequences of sevenlacY alleles isolated from natural isolates ofEscherichia coli. Nucleotide heterozygosity estimates for this locus were compared to those obtained from previous studies of intraspecific variation at chromosomal loci, revealing thatlacY has unusually low synonymous site variation. The average pairwise heterozygosity of synonymous sites (Ks=0.0112+/-0.0100) is the second lowest reported and the lowest for loci that have an equivalent level of nonsynonymous variation. We consider several hypotheses to explain how different forces in evolution could act to create the observed pattern of polymorphism, including selection for translational efficiency and positive selection. Our analysis most strongly supports the hypothesis that positive selection has acted on thelacY locus inE. coli.  相似文献   
165.
166.
阔叶红松(Pinus koraiensis)林是东北东部山区的地带性森林植被, 阐明其生产力的影响因素, 对于理解温带森林生产力维持机制具有重要意义。该研究依托小兴安岭典型阔叶红松林9 hm2动态监测样地, 基于2005和2015年的30 m × 30 m样方内所有胸径>6.5 cm的木本植物的调查数据, 计算各样方的树冠结构复杂性、物种多样性和林分胸高断面积, 结合各样方的地形和土壤理化性质数据, 拟合结构方程模型, 定量分析影响典型阔叶红松林生产力的直接和间接因素。研究结果显示: 树冠结构复杂性和物种多样性与生产力显著正相关, 且树冠结构复杂性对生产力的影响显著高于物种多样性; 树冠结构复杂性对生产力的作用分为树冠垂直分层和树冠可塑性, 其中树冠垂直分层是树冠结构复杂性影响阔叶红松林生产力的主要因素, 而树冠可塑性无显著影响; 林分胸高断面积与生产力显著正相关, 其解释权重仅次于树冠结构复杂性, 树冠结构复杂性与物种多样性均通过影响林分胸高断面积对阔叶红松林生产力产生间接影响; 考虑不同树冠结构复杂性时, 坡度和土壤全磷含量代表的环境因素在调节生产力上发挥的作用存在差异, 移除树冠垂直分层的作用后两者与生产力呈显著的负相关关系。综上可知, 在典型阔叶红松林中, 树冠结构复杂性比物种多样性更有效地解释了生产力的变化, 同时不可忽视其他生物和非生物因素对生产力的作用。  相似文献   
167.
Despite data and theory from comparative anatomy, embryology, molecular biology, genomics, and evolutionary developmental biology, antievolutionists continue to present the eye as an example of a structure too complex to have evolved. They stress what we have yet to explain about the development and evolution of eyes and present incomplete information as evidence that evolution is a “theory in crisis.” An examination of the evidence, however, particularly evidence that has accumulated in the twentieth and twenty-first centuries, refutes antievolutionists’ claims. The distribution of eyes in extant organisms, combined with what we now know about the control of eye development across diverse groups of organisms, provides significant evidence for the evolution of all major components of the eye, from molecular to morphological, and provides an excellent test of predictions based on common ancestry.  相似文献   
168.
Conspecific prey individuals often exhibit persistent differences in behavior (i.e., animal personality) and consequently vary in their susceptibility to predation. How this form of selection varies across environmental contexts is essential to predicting ecological and evolutionary dynamics, yet remains currently unresolved. Here, we use three separate predator–prey systems (sea star–snail, wolf spider–cricket, and jumping spider–cricket) to independently examine how habitat structural complexity influences the selection that predators impose on prey behavioral types. Prior to conducting staged predator–prey interaction encounters, we ran prey individuals through multiple behavioral assays to determine their average activity level. We then allowed individual predators to interact with groups of prey in either open or structurally complex habitats and recorded the number and individual identity of prey that were eaten. Habitat complexity had no effect on overall predation rates in any of the three predator–prey systems. Despite this, we detected a pervasive interaction between habitat structure and individual prey activity level in determining individual prey survival. In open habitats, all predators imposed strong selection on prey behavioral types: sea stars preferentially consumed sedentary snails, while spiders preferentially consumed active crickets. Habitat complexity dampened selection within all three systems, equalizing the predation risk that active and sedentary prey faced. These findings suggest a general effect of habitat complexity that reduces the importance of prey activity level in determining individual predation risk. We reason this occurs because activity level (i.e., movement) is paramount in determining risk within open environments, whereas in complex habitats, other behavioral traits (e.g., escape ability to a refuge) may take precedence.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号