首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49039篇
  免费   3576篇
  国内免费   2298篇
  2024年   91篇
  2023年   845篇
  2022年   1201篇
  2021年   1687篇
  2020年   1635篇
  2019年   2132篇
  2018年   1818篇
  2017年   1278篇
  2016年   1358篇
  2015年   1736篇
  2014年   2699篇
  2013年   3618篇
  2012年   1918篇
  2011年   2402篇
  2010年   1770篇
  2009年   2108篇
  2008年   2126篇
  2007年   2237篇
  2006年   1998篇
  2005年   1863篇
  2004年   1712篇
  2003年   1509篇
  2002年   1457篇
  2001年   1213篇
  2000年   998篇
  1999年   929篇
  1998年   895篇
  1997年   835篇
  1996年   777篇
  1995年   728篇
  1994年   710篇
  1993年   640篇
  1992年   627篇
  1991年   580篇
  1990年   457篇
  1989年   445篇
  1988年   412篇
  1987年   337篇
  1986年   299篇
  1985年   367篇
  1984年   459篇
  1983年   261篇
  1982年   345篇
  1981年   316篇
  1980年   249篇
  1979年   230篇
  1978年   169篇
  1977年   113篇
  1976年   120篇
  1973年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a K m of 45 and 54 M FeIII-EDTA and a V max of 42 and 33 nmol Fe2+·(g FW)–1·min–1 for the wild type and the mutant, respectively. The pH optimum for the reaction was around pH 5.5. The approximately four fold stimulation of FCR activity was independent of formation of root hairs and/or transfer cells induced by iron deficiency. Iron-deficiency-induced chlorosis and the development of a rigid root habit disappeared when ferric chelate was applied to the leaves, while FCR activity remained unchanged. The time course of the responses to iron deficiency showed that morphological and physiological responses were controlled separately.Abbreviations FCR ferric chelate reductase - FW fresh weight Thanks are due to Klaas Sjollema (Department of Electronmicroscopy, University of Groningen, The Netherlands) for help with the electron microscopy sample preparation and especially to Dr. Uwe Santore (Heinrich-Heine-University for electron microscopy. This work was supported by the SCIENCE programm of the European community; P.R.M.) and a Personal Research Grant by the Ministerium für Wissenschaft und Forschung of Nordrhein-Westfalen (P.R.M.) and last, not least by the productive discussions in ECOTRANS B.V.  相似文献   
992.
The cellular pathway of sugar uptake in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case of Vicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space of Vicia and Phaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for both Vicia and Phaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.Abbreviations AFS apparent free space - CF 5-(6)-carboxyfluorescein - CFDA 5-(6)-carboxyfluorescein diacetate - Mes 2-(N-morpholino)ethanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SRG sulphorhodamine G The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are grateful to Stella Savoury for preparing the photomicrographs.  相似文献   
993.
Abstract: The adenylyl cyclase-cyclic AMP (cAMP) second messenger pathway has been proposed to regulate myelin gene expression; however, a clear correlation between endogenous cAMP levels and myelin-specific mRNA levels has never been demonstrated during the induction or maintenance of differentiation by the myelinating Schwann cell. Endogenous cAMP levels decreased to 8–10% of normal nerve by 3 days after crush or permanent transection injury of adult rat sciatic nerve. Whereas levels remained low after transection injury, cAMP levels reached only 27% of the normal values by 35 days after crush injury. Because P0 mRNA levels were 60% of normal levels by 14 days and 100% by 21 days after crush injury, cAMP increased only well after P0 gene induction. cAMP, therefore, does not appear to trigger myelin gene induction but may be involved in myelin assembly or maintenance. Forskolin, an activator of adenylyl cyclase, increased endoneurial cAMP levels only in the normal nerve, and in the crushed nerve beginning at 16 days after injury, but at no time in the transected nerve. Only by treating transected nerve with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cAMP phosphodiesterases, in combination with forskolin was it possible to increase cAMP levels. No induction of myelin genes, however, was observed with short- or long-term treatment with IBMX and forskolin in the transected nerve. A three-fold increase in phosphodiesterase activity was observed at 35 days after both injuries, and a nonmyelinated nerve was shown to have even higher activity. These experiments, therefore, suggest an important role for phosphodiesterase in the inactivation of this second messenger-dependent stimuli when Schwann cells are non-myelinating, such as after sciatic nerve injury or in the nonmyelinated nerve, which again implies that cAMP may be required for the maintenance of the myelin sheath.  相似文献   
994.
Abstract: Antisera were prepared against six postsynaptic density glycoprotein fractions (150–180, 62–80, 50, 41, 33, and 28 kDa) that show enhanced fucosylation during memory formation after training day-old chicks in a one-trial passive avoidance task. Each antiserum was tested for its possible effect on memory retention. Bilateral intracranial injections of two of the antisera, R-1 and R-6, or their IgGs (IgG-1 and IgG-6), resulted in amnesia for the passive avoidance task when chicks were tested 24 h later. IgG-1 and IgG-6 antibodies were amnestic only when injected 5.5 h after training, and had no effect when injections were made 30 min before training, thus resembling an effect previously observed with polyclonal or monoclonal anti-N-CAM antibodies. IgG-1 and IgG-6 antibodies were found to be specific for protein epitopes of glycoproteins that contain a high amount of N-linked mannose and fucose, and a very low amount of polysialic acid and O-linked galactose. Absorption of IgG-6 antibodies with neural cell adhesion molecule (N-CAM) isolated from synaptic plasma membranes derived from day-old chick brain resulted in loss of amnestic effect. As we have previously shown that long-term memory for the passive avoidance task requires two waves of glycoprotein synthesis, the first occurring immediately after training and the second 5–8 h later, the present results suggest strongly that isoforms of N-CAM molecules with a low level of sialic acid are involved specifically in the establishment of an enduring memory for the experience of the passive avoidance task in chicks, possibly by stabilising changes in synaptic connectivity that encode the memory.  相似文献   
995.
Abstract: We have previously demonstrated that the in vivo vitreal injection of an antisense oligonucleotide directed to the kinesin heavy chain inhibits retinal kinesin synthesis by 82% and concomitantly inhibits rapid transport of total protein into the optic nerve by 70%. These results establish a major role for kinesin in rapid axonal transport in vivo. Recently, the cloning of a family of kinesin-like molecules from the mammalian brain has been reported, and some of these proteins are also expressed in neurons. To assign a specific function to the kinesin heavy chain we inhibited the kinesin synthesis with an antisense kinesin oligonucleotide and assessed the axonal transport into the optic nerve of representative proteins from each of three vesicle classes that contain rapidly transported proteins. Marker proteins used were substance P for peptide-containing synaptic vesicles, the amyloid precursor protein for plasma membrane precursor vesicles, and several integral synaptic vesicle proteins. Our results indicate that the major anterograde motor protein for all three vesicle classes utilizes kinesin heavy chain, although we discuss alternative explanations.  相似文献   
996.
Abstract: Previous studies have shown that PC12 cells depend on growth factors for their survival. When deprived of growth factors, the cells undergo a dying process termed "apoptosis" (programed cell death). We show here that muscarinic agonists inhibited the apoptotic death of growth factor-deprived PC12M1 cells (PC12 cells stably expressing cloned m1 muscarinic acetylcholine receptors). This protective effect of the muscarinic agonists was observed in both proliferating and neuronal PC12M1 cells, was blocked by the muscarinic antagonist atropine, and was not observed in PC12 cells lacking m1 receptors. Muscarinic receptors therefore mediate inhibition of apoptosis in these cells. In addition to its effect on survival, the muscarinic agonist oxotremorine induced inhibition of DNA synthesis as well as growth arrest of exponentially growing PC12M1 cells at the S and G2/M phases of the cell cycle. Muscarinic receptors in these cells may therefore mediate inhibition of cell cycle progression.  相似文献   
997.
Abstract: In this study we have examined (1) the integrated function of the mitochondrial respiratory chain by polarographic measurements and (2) the activities of the respiratory chain complexes I, II–III, and IV as well as the ATP synthase (complex V) in free mitochondria and synaptosomes isolated from gerbil brain, after a 30-min period of graded cerebral ischaemia. These data have been correlated with cerebral blood flow (CBF) values as measured by the hydrogen clearance technique. Integrated functioning of the mitochondrial respiratory chain, using both NAD-linked and FAD-linked substrates, was initially affected at CBF values of ∼35 ml 100 g−1 min−1, and declined further as the CBF was reduced. The individual mitochondrial respiratory chain complexes, however, showed differences in sensitivity to graded cerebral ischaemia. Complex I activities decreased sharply at blood flows below ∼30 ml 100 g−1 min−1 (mitochondria and synaptosomes) and complex II–III activities decreased at blood flows below 20 ml 100 g−1 min−1 (mitochondria) and 35–30 ml 100 g−1 min−1 (synaptosomes). Activities declined further as CBF was reduced below these levels. Complex V activity was significantly affected only when the blood flow was reduced below 15–10 ml 100 g−1 min−1 (mitochondria and synaptosomes). In contrast, complex IV activity was unaffected by graded cerebral ischaemia, even at very low CBF levels.  相似文献   
998.
The marine alga Heterosigma carterae Hulburt (Raphidophyta) was grown in N-limiting batch cultures using either nitrate or ammonium as the N source, at photon flux densities (PFDs) of 50, 200, and 350 μmol·m-2·s-1 in a 12:12 h LD cycle. Carbon content could be estimated from biovolume (μg C = 0.278 × nL; R = 0.98) but not reliably from pigment content. During exponential growth, ammonium-grown cells (in comparison with nitrate-grown cells at the same PFD) attained higher growth rates by at least 20%, contained more N, and had a lower C:N ratio, higher concentrations of intracellular free amino acids, and higher ratios of glutamine: glutamate (Gln: Glu) and asparagine: aspartate (Asn:Asp). Growth was nearly light-saturated on ammonium at 200 μmol·m-2·s-1 (cell-specific growth rate of 1.2 d-1) but probably not saturated in nitrate-grown cells at 350 μmol·m-2·s-1. PFD did not affect Gln: Glu or Asn: Asp for a given N source. These results indicate that the nitrate-growing cells were more N-stressed than those using ammonium (which in contrast were relatively C-stressed) and that this organism would show an enhanced competitive advantage against other species when supplied with a transient supply of ammonium rather than nitrate .  相似文献   
999.
Abstract: We have isolated several new genes that are specifically expressed by oligodendrocytes in the CNS. This was achieved by differential screening of a rat spinal cord cDNA library with probes derived from normal and from oligodendrocyte-free spinal cord mRNAs. Four of these genes are exclusively expressed by oligodendrocytes: Three of these are not related to known genes, whereas one encodes the myelin oligodendrocyte glycoprotein (MOG). Four other genes are expressed by oligodendrocytes as well as by Schwann cells. One gene codes for apolipoprotein D, which is thought to be involved in lipid metabolism. A second cDNA sequence codes for the recently identified galactosylceramide-synthesizing enzyme UDP-galactose:ceramide galactosyl-transferase. The third gene encodes a small protein with four putative transmembrane domains that is related to a T-lymphocyte-specific membrane protein, MAL. The fourth gene encodes the rat homologue of the stearyl-CoA-desaturase 2 (SCD2) gene, which is specifically expressed in the nervous system and involved in the synthesis and regulation of long-chain unsaturated fatty acids essential for myelination. Finally, we found that a member of the β-tubulin family is highly expressed in oligodendrocytes as well as neurons. The identification of several new proteins that may play a role in myelin synthesis and sheath formation will lead to new insight into this complex mechanism.  相似文献   
1000.
Chloroplast division in Nannochloris bacillaris Naumann (Chlorophyta) was examined by electron microscopy after preparation of samples by freeze-substitution. A pair of belts appeared on the surface of the outer and inner envelope membranes at the middle of the chloroplast. These belts seemed to be constructed of thin fibrils that run parallel to the longitudinal direction of the belts. The outer fibrillar belt increased in width as the constriction of the chloroplast advanced. It appears that the fibrillar belt is the division apparatus of the chloroplast. It encircles the chloroplast and finally divides the chloroplast in two as the diameter of the belt decreases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号