首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   32篇
  国内免费   8篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   11篇
  2020年   7篇
  2019年   3篇
  2018年   15篇
  2017年   11篇
  2016年   11篇
  2015年   16篇
  2014年   27篇
  2013年   26篇
  2012年   23篇
  2011年   35篇
  2010年   29篇
  2009年   24篇
  2008年   20篇
  2007年   13篇
  2006年   11篇
  2005年   11篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有395条查询结果,搜索用时 843 毫秒
71.
Despite consumer and regulatory focus on the quality of final food and beverage (F&B) products, little attention is given to the release and management of toxic chemicals by F&B processors. This study develops five plant-level indicators of environmental performance specific to toxic chemicals. Our findings suggest that (i) only few F&B processors invest in toxic chemical prevention activities; (ii) the major toxic chemical management strategy is treatment rather than recycling or energy recovery; (iii) F&B processors, on average, have improved their toxic chemical management rates between 2001 and 2012; and (iv) there is evidence for homogeneous performance across similar producers in the F&B processing industry but there is no evidence for the role of socio-economic characteristics of surrounding communities on the environmental performance of F&B processors.  相似文献   
72.
The therapeutic and diagnostic efficiency of engineered small proteins, peptides, and chemical drug candidates is hampered by short in vivo serum half-life. Thus, strategies to tailor their biodistribution and serum persistence are highly needed. An attractive approach is to take advantage of the exceptionally long circulation half-life of serum albumin or IgG, which is attributed to a pH-dependent interaction with the neonatal Fc receptor (FcRn) rescuing these proteins from intracellular degradation. Here, we present molecular evidence that a minimal albumin binding domain (ABD) derived from streptococcal protein G can be used for efficient half-life extension by indirect targeting of FcRn. We show that ABD, and ABD recombinantly fused to an Affibody molecule, in complex with albumin does not interfere with the strictly pH-dependent FcRn-albumin binding kinetics. The same result was obtained in the presence of IgG. An in vivo study performed in rat confirmed that the clinically relevant human epidermal growth factor 2 (HER2)-targeting Affibody molecule fused to ABD has a similar half-life and biodistribution profile as serum albumin. The proof-of-concept described may be broadly applicable to extend the in vivo half-life of short lived biological or chemical drugs ultimately resulting in enhanced therapeutic or diagnostic efficiency, a more favorable dosing regimen, and improved patient compliance.  相似文献   
73.

Background and Aims

Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described.

Methods

Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)–VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy.

Key Results

VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP–VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP–VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells.

Conclusions

These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis.  相似文献   
74.
Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca2+ content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy.  相似文献   
75.
The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn2280), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991–1001). Also, NF-κB-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756–1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-κB and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-κB activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-κB-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-κB by endogenous degradation of IκB-α was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-κB-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake.  相似文献   
76.
77.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that promotes degradation of cell surface LDL receptors (LDLRs) in selected cell types. Here we used genetic and pharmacological inhibitors to define the pathways involved in PCSK9-mediated LDLR degradation. Inactivating mutations in autosomal recessive hypercholesterolemia (ARH), an endocytic adaptor, blocked PCSK9-mediated LDLR degradation in lymphocytes but not in fibroblasts. Thus, ARH is not specifically required for PCSK9-mediated LDLR degradation. Knockdown of clathrin heavy chain with siRNAs prevented LDLR degradation. In contrast, prevention of ubiquitination of the LDLR cytoplasmic tail, inhibition of proteasomal activity, or disruption of proteins required for lysosomal targeting via macroautophagy (autophagy related 5 and 7) or the endosomal sorting complex required for trafficking (ESCRT) pathway (hepatocyte growth factor-regulated Tyr-kinase substrate and tumor suppressor gene 101) failed to block PCSK9-mediated LDLR degradation. These findings are consistent with a model in which the LDLR-PCSK9 complex is internalized via clathrin-mediated endocytosis and then routed to lysosomes via a mechanism that does not require ubiquitination and is distinct from the autophagy and proteosomal degradation pathways. Finally, the PCSK9-LDLR complex appears not to be transported by the canonical ESCRT pathway.  相似文献   
78.
卢艳芬 《生态科学》2007,26(2):191-192
资源消费量急剧增加,环境压力越来越大,是我国经济社会进一步发展亟待解决的问题。从国家建设资源节约型、环境友好型社会的基本要求出发,结合广东省省情,论述了加快建设资源节约型和环境友好型社会,发展循环经济和促进经济增长方式根本性转变的重要性,认为这是实现广东省经济和社会持续发展,率先基本实现社会主义现代化的必由之路;提出了普及生态科学知识,共同营造生态文明的未来,是建设资源节约型和环境友好型社会的基础。  相似文献   
79.
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.  相似文献   
80.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号